

DEPARTMENT OF NANOSCIENCE AND TECHNOLOGY

M.Sc., Nanoscience and Technology

REGULATIONS AND SYLLABUS [For the candidates admitted from the Academic Year 2022 – 2023 onwards]

ALAGAPPA UNIVERSITY

(A State University Accredited with "A+" grade by NAAC (CGPA: 3.64) in the Third Cycle and Graded as Category-I University by MHRD-UGC) Karaikudi -630003, Tamil Nadu.

The panel of Members-Broad Based Board of Studies

Chairperson:	
Name : Dr. K. Gurunathan,	
Designation : Dean, Faculty of Science,	and the second
Department : Head, Department of Nanoscience & Technology,	The second se
University : Science campus, Alagappa University, Karaikudi-630003	
Teaching Experience: 17, Research Experience: 34,	
Area of Research: Hydrogen production, Nanomaterials, Gas sensors,	
Photocatalysis, Electrochemical sensing, Conducting	
Polymer Nanocomposites	
Foreign Expert:	-
Name : Dr. M. Ashokkumar	
Designation: Professor & Assistant Deputy Vice Chancellor International	000
Department : School of Chemistry	
University : University of Melbourne, Australia	
Teaching Experience: 25, Research Experience: 35,	
Area of Research: The fundamental and applied aspects of acoustic	
cavitation, Hydrogen Energy, Photocatalysis	
Indian Expert:	
Name : Dr. R. Ilangovan	A REAL PROPERTY
Designation : Professor	Jal
Department : National Centre for Nanoscience & Technology	
University : University of Madras, Chennai	13V
Teaching Experience: 17, Research Experience: 25	
Area of Research: Piezoelectric, Gas sensors	
Indian Expert:	
Name : Dr. G. Annadurai	
Designation : Professor, Co-ordinator for UGC Innovative	
Programme in Nanoscience	22
Department : Department of Environmental Biotechnology	
University : Sri Paramakalyani Centre for Excellence in Environmental	
Sciences	
Teaching Experience: 18, Research Experience: 26	
Area of Research: Nanoscience and Nanotechnology, Environmental	
Science, Adsorption Studies, Nanocomposite	-
Industry Expert: Name : Dr. N. Anbananthan	
	The man
Designation : Senior Vice President	125
Designation : Senior Vice President Company name and address: Ion Exchange (INDIA) Ltd, Ion Hourse,	
Designation : Senior Vice President Company name and address: Ion Exchange (INDIA) Ltd, Ion Hourse, Dr.E.Moses Road, Mahalakshmi Mumbai – 400 011, MH	
Designation : Senior Vice President Company name and address: Ion Exchange (INDIA) Ltd, Ion Hourse, Dr.E.Moses Road, Mahalakshmi Mumbai – 400 011, MH Experience : 33	
Designation : Senior Vice President Company name and address: Ion Exchange (INDIA) Ltd, Ion Hourse, Dr.E.Moses Road, Mahalakshmi Mumbai – 400 011, MH	

Members (All Department faculty)

Name : Dr. K. Gurunathan,

Designation : Dean, Faculty of Science,

Department : Head, Department of Nanoscience & Technology,

University : Science campus, Alagappa University, Karaikudi-630003 Teaching Experience: 17, Research Experience: 34,

Area of Research: Hydrogen production, Nanomaterials, Gas sensors, Photocatalysis, Electrochemical sensing, Conducting Polymer Nanocomposites

Name : Dr. P. Shakkthivel

Designation : Professor

Department : Department of Nanoscience & Technology,

University : Science campus, Alagappa University, Karaikudi

Teaching Experience: 15, Research Experience: 23,

Area of Research: Li-ion Batteries, Supercapacitor, Magnetic Nanoparticles & Targeted drug Delivery Modified electrodes & Biomolecule diagnosis

Name : Dr. C. Balalakshmi

Designation : Assistant Professor

Department : Department of Nanoscience & Technology,

University : Science campus, Alagappa University, Karaikudi Teaching Experience: 6, Research Experience: 9, Area of Research: Nano marine biotechnology, Nano anti coating food packaging application, Nano medical biotechnology

Name : Dr. G. Ramalingam

Designation : Assistant Professor

Department : Department of Nanoscience & Technology,

University : Science campus, Alagappa University, Karaikudi

Teaching Experience: 10, Research Experience: 10

Area of Research: Nanomaterials, QDs, Energy materials, Solar cell Environmental application

Name : Dr. N. Suganthy Designation : Assistant Professor Department : Department of Nanoscience & Technology, University : Science campus, Alagappa University, Karaikudi Teaching Experience: 9, Research Experience: 11, Area of Research: Nanotoxicology, Nanopharmacology, Targeted drug delivery, MOF for biological applications

 Alumnus/Alumna:

 Name
 :Dr.T.M.Amarnath

 Current position
 :Guest Researcher

 Type of Profession:
 Guest Researcher

 Professional address:
 Department of Nanoscience & Technology, Science

 campus, Alagappa University, Karaikudi
 Image: Comparison of the second second

ALAGAPPA UNIVERSITY DEPARTMENT OF NANOSCIENCE AND TECHNOLOGY Karaikudi -630003, Tamil Nadu.

REGULATIONS AND SYLLABUS-(CBCS-University Department)

[For the candidates admitted from the Academic Year 2022 – 2023 onwards]

Name of the Department	: Nanoscience and Technology
Name of the Programme	: M.Sc., Nanoscience and Technology
Duration of the Programme	: Full Time (Two Years)

Choice-Based Credit System

A choice-Based Credit System is a flexible system of learning. This system allows students to gain knowledge at their own tempo. Students shall decide on electives from a wide range of elective courses offered by the University Departments in consultation with the Department committee. Students undergo additional courses and acquire more than the required number of credits. They can also adopt an inter-disciplinary and intra-disciplinary approach to learning, and make the best use of the expertise of available faculty.

Programme

Programme" means a course of study leading to the award of a degree in a discipline.

Courses

'Course' is a component (a paper) of a programme. Each course offered by the Department is identified by a unique course code. A course contains lectures/ tutorials/laboratory /seminar/project / practical training/report writing /Viva-voce, etc or a combination of these, to meet effectively the teaching and learning needs.

Credits

The term "Credit" refers to the weightage given to a course, usually in relation to the instructional hours assigned to it. Normally in each of the courses credits will be assigned on the basis of the number of lectures/tutorial/laboratory and other forms of learning required to complete the course contents in a 15-week schedule. One credit is equal to one hour of lecture per week. For laboratory/field work one credit is equal to two hours.

Semesters

An Academic year is divided into two **Semesters.** In each semester, courses are offered in 15 teaching weeks and the remaining 5 weeks are to be utilized for conduct of examination and evaluation purposes. Each week has 30 working hours spread over 5 / 6 days a week.

Medium of Instruction

Medium of Instruction for the Programme is English

Departmental Committee

The Departmental Committee consists of the faculty of the Department. The Departmental Committee shall be responsible for admission to all the programmes offered by the Department including the conduct of entrance tests, verification of records, admission, and evaluation. The Departmental Committee determine the deliberation of courses and specifies the allocation of credits semester-wise and course-wise. For each course, it will also identify the number of credits for lectures, tutorials, practicals, seminars etc. The courses (Core/Discipline Specific Elective/Non-Major Elective) are designed by teachers and approved by the Departmental Committees. Courses approved by the Departmental Committees shall be approved by the Board of Studies/Broad Based Board of Studies. A teacher offering a course will also be responsible for maintaining attendance and performance sheets (CIA -I, CIA-II, assignments and seminar) of all the students registered for the course. The Non-major elective programme, MOOCs coordinator and Internship Mentor are responsible for submitting the performance sheet to the Head of the department. The Head of the Department consolidates all such performance sheets of courses pertaining to the programmes offered by the department. Then forward the same to be Controller of Examinations.

PEO-1	Excelling societal problem solving through miniaturization technologies		
	by developing dynamic younger generations		
PEO-2	Inculcating in-depth knowledge in basic science concepts		
PEO-3	Concepts architecturing fundamental nanoscience and technology		
	knowledge to develop novel nanomaterials		
PEO-4	Developing innovative nano-products as a solution for industrial and real-		
	life problems		
PEO-5	Creating professionalism in fabrication of reliable and reproducible		
	nanomaterials		
PEO-6	Articulating skills in developing scientific content and sustainable team-		
	work		
PEO-7	Mastering experimental tools and techniques for analyzing nanomaterials		
PEO-8	Interpreting experimental data for characterization and evaluation of		
	nanomaterials		
PEO-9	Contributing cost-effective, eco-friendly, societal need products for the		
	betterment of environment		
PEO-10	Associating various disciplines of industry and society for the socio-		
	economic growth of the country		

Programme Educational Objectives (PEO)

Programme Specific Objectives-(PSO)

PSO-1	To foster the transfer of new technologies and novel products particularly, atomically designed applications	
PSO-2	To inculcate knowledge on novel strategies to synthesis nanomaterials effectively and their specialized application.	
PSO-3	To provide insight on green chemistry and Biomimicry	
PSO-4	To provide in depth knowledge on electronic, energy and medical devices	
PSO-5	To provide exposure on designing nanomaterials for specific applications	

Programme Outcomes-(PO)

PO-1	Expertize in the use of advanced nanoscience and technology in various applications.	Knowledge
PO-2	Bridging the basic science knowledge in the field of nanoscience.	
PO-3	Capable of designing nanomaterials with various dimensions.	
PO-4	Proficient in developing innovative nano-products for day-to-day life	
PO-5	Ability to innovate traditional research to advanced cutting edge technologies for device development	Skill
PO-6	Able to comprehend scientific ideas, design and documentation	
PO-7	Capable to use modern techniques and research tools for nanomaterials characterisation	
PO-8	Acquiring skills in computing the analytical data	
PO-9	Entrepreneur in developing nano-engineering materials for social needs	Attitude
PO-10	Develop industry-institute linkage to enhance service to society	

Programme Specific Outcomes- (PSO)

PSO- 1	Nano-engineered advanced techniques for the fabrication of Next- generation energy storage devices	
PSO-2	Fabrication of nanomaterials for biomedical and sensor applications	Knowledge
PSO-3	Biologically-derived greener nanomaterials for drug-delivery applications	
PSO-4	Acquiring skills in the energy harvesting, storage of large-scale fabrication	Skill
PSO-5	Introducing start-ups in the field of renewable energy, bio-medical and sensing applications	Attitude

Eligibility for admission

A candidate who has passed B.Sc., Degree Examination with Mathematics, Physics, Chemistry and Biology as main subject of study of any university or any of the B.Sc., degree examination with specialization such as Mathematics, Applied Mathematics, Applied Physics, Electronics, Nuclear Physics, Biophysics, Industrial chemistry, Polymer Chemistry, Chemistry, Pharmaceutical Chemistry, Biotechnology, Applied Nanoscience, Nanobiotechnology, Biochemistry and Micro-biology or any other specialization in Mathematics, Physics, Chemistry and Biology and B.E/B.Tech in ECE, EEE, Chemical Engg., Petrochemical Engg., Mater.Sci. & Engg., Nanotechnology, Biotechnology and Bioinformatics of some other university accepted by the syndicate as equivalent thereto, subject to such condition as may be prescribed therefore shall be permitted to appear and qualify for the M.Sc. Degree in Nanoscience and Technology of this University after a course of study of two academic years.

Minimum Duration of Programme

The programme is for a period of two years. Each year shall consist of two semesters viz. Odd and Even semesters. Odd semesters shall be from June / July to October / November and even semesters shall be from November / December to April / May. Each semester there shall be not less than 90 working days consisting of 5 teaching hours per working day which shall comprise 450 teaching clock hours for each semester (exclusive of the days for the conduct of the University end- semester examination).

Components

A PG programme consists of a number of courses. The term "course" is applied to indicate a logical part of the subject matter of the programme and is invariably equivalent to the subject matter of a "paper" in the conventional sense. The following are the various categories of the courses suggested for the PG programmes:

- **A.** Core courses (CC)- "Core Papers" means "the core courses" related to the programme concerned including practicals and project work offered under the programme and shall cover core competency, critical thinking, analytical reasoning, and research skill.
- **B.** Discipline-Specific Electives (DSE) means the courses offered under the programme related to the major but are to be selected by the students, shall cover additional academic knowledge, critical thinking, and analytical reasoning.
- C. Non-Major Electives (NME)- Exposure beyond the discipline
 - All PG programme students have to undergo a total of two Non Major Elective courses with 2 credits offered by other departments (one in II Semester another in III Semester).
 - ➤ A uniform time frame of 3 hours on a common day (Tuesday) shall be allocated for the Non-Major Electives.

- Non Major Elective courses offered by the departments pertaining to a semester should be announced before the end of previous semester and the same shall be submitted to the Curriculum Design and Development Cell and posted in the University websites.
- Registration process: Students have to register for the Non-Major Elective course within 15 days from the commencement of the semester either in the department or online. The list of registered candidates shall be submitted to Director, Curriculum Design and Development Cell.
- **D.** Self Learning Courses from MOOCs platforms.
 - MOOCs shall be on voluntary for the students.
 - All PG programmes students have to undergo a total of 2 Self Learning Courses (MOOCs) one in II semester and another in III semester.
 - > The actual credits earned through MOOCs shall be transferred to the credit plan of programmes as extra credits.
 - If the Self Learning Course (MOOCs) is without credit, 2 credits/course be given and transferred as extra credit
 - While selecting the MOOCs, preference shall be given to the course related to employability skills.
- E. Projects / Dissertation /Internships (Maximum Marks: 200)

The duration of the Project/Dissertation/internship shall be a minimum of three months in the fourth semester.

> Plan of work

Project/Dissertation

The candidate shall undergo Project/Dissertation Work during the final semester. The candidate should prepare a scheme of work for the dissertation/project and should get approval from the guide. The candidate, after completing the dissertation /project work, shall be allowed to submit it to the university departments at the end of the finalsemester. If the candidate is desirous of availing the facility from other departments/universities/laboratories/organizations they will be permitted only after getting approval from the guide and HOD. In such a case, the candidate shall acknowledge the same in their dissertation/project work.

<u>Internship</u>

The students who have opted for an Internship must undergo industrial training in the reputed organizations to accrue industrial knowledge in the final semester. The student has to find industry related to their discipline (Public limited/Private Limited/owner/NGOs etc.,) in consultation with the faculty in charge/Mentor and get approval from the head of the department and Departmental Committee before going for an internship.

> No. of copies of the dissertation/project report/internship report

The candidate should prepare three copies of the dissertation/project/report and submit the same for the evaluation of examiners. After evaluation, one copy will be retained in the department library, one copy will be retained by the guide and the student shall hold one copy.

> Format to be followed for dissertation/project report

The format /certificate for thesis to be followed by the student are given below

- > Title page
- Certificate
- Acknowledgment
- Content as follows:

Chapter No	Title	Page number
1	Introduction	
2	Aim and objectives	
3	Review of literature	
4	Materials and methods	
5	Result	(e)
6	Discussion	6.
7	Summary	
8	References	

> Format of the title page

Title of Dissertation/Project work

Dissertation/Project submitted in partial fulfilment of the requirement for the degree of Master of Science to the Alagappa University, Karaikudi -630003.

By (Student Name) (Register Number) University Logo

Department of -----

Alagappa University

(A State University Accredited with "A+" grade by NAAC (CGPA: 3.64) in the Third Cycle and Graded as Category-I University by MHRD-UGC, 2019: QS ASIA Rank-216, QS BRICS Rank-104,QS India Rank-20)

Karaikudi - 630003

(Year)

> Format of certificates

Certificate -Guide

Karaikudi

Date: Research Supervisor

Certificate - (HOD)

This is to certify that the thesis entitled "------" submitted by Mr/Mis ------(Reg No: ------) to the Alagappa University, inpartial fulfilment for the award of the degree of Master of ------in is a bonafide record of research work done under the supervision of Dr.-----, AssistantProfessor, Department of ------, Alagappa University. This is to further certify that the thesis or any part thereof has not formed the basis of the award to the student of any degree, diploma, fellowship, or any other similar title of any University or Institution.

Place: Karaikudi Date: Head of the Department

Declaration (student)

I hereby declare that the dissertation entitled "-------" submitted to the Alagappa University for the award of the degree of Master of ------ in -----has been carried out by me under the guidance of Dr. ------, Assistant Professor, Department of , Alagappa University, Karaikudi – 630 003. This is my original and independent work and has not previously formed the basis of the award of any degree, diploma, associateship, fellowship, or any other similar title of any University or Institution.

Place: Karaikudi Date: (-----)

Internship

> Format to be followed for Internship report

The format /certificate for internship report to be followed by the student are given

below

> Title page -Format of the title page

Title of internship report

Internship report submitted in partial fulfilment of the requirement for the Master of degree in to the Alagappa University, Karaikudi -630003.

By (Student Name) (Register Number) University Logo

Department of -----

Alagappa University

(A State University Accredited with "A+" grade by NAAC (CGPA: 3.64) in the Third Cycle and Graded as Category-I University by MHRD-UGC, 2019: QS ASIA Rank-216, QS BRICS Rank-104,QS India Rank-20)

Karaikudi – 630003

(Year)

Certificate-(Format of certificate – faculty in-charge)

Place:

Date:

Research Supervisor

Certificate (HOD)

This is to certify that the Internship report entitled "------" submitted by Mr/Mis.------(**Reg No**) to the Alagappa University, in partial fulfilment for the award of the Master of Science in ------ is a bonafide record of Internship report done under the supervision of , Assistant Professor, Department of ------, Alagappa University and the work carried out by him/her in the organization M/S -------, This is to further certify that the thesis or any part thereof has not formed the basis of the award to the student of any degree, diploma, fellowship, or any other similar title of any University or Institution.

Place: Karaikudi Date:

Declaration (student)

I hereby declare that the Internship Report entitled "_____" submitted to the Alagappa University for the award of the **Master of Science in** has been carried out by me under the supervision of , Assistant Professor, Department of------------, Alagappa University, Karaikudi – 630 003. This is my original and independent work carried out by me in the organization M/S ------- for theperiod of three months or and has not previously formed the basis of the award of any degree, diploma, associateship, fellowship, or any other similar title of any University orInstitution.

Place: Karaikudi Date: Head of the Department

Certificate-(Format of certificate – Company supervisor or Head of the Organization)

Place:

Date:

Supervisor or in charge

AcknowledgmentContent as follows

Chapter No	Title	Page number
1	Introduction	
2	Aim and objectives	
3	Organization profile /details	
4	Methods / Work	
5	Observation and knowledge gained	
6	Summary and outcome of the Internship study	
7	References	

Teaching methods:

The classroom teaching would be through conventional lectures and use of OHP and Power Point presentations. The lecture would be such that the student should participate actively in the discussion. Student seminars would be conducted and scientific discussions would be arranged to improve their communicative skill. In the laboratory, instruction would be given for the experiments followed by demonstration and finally the students have to do the experiments individually.

Periodic tests would be conducted and for the students of slow learners would be given special attention.

Attendance

Students must have earned 75% of attendance in each course for appearing for the examination. Students who have earned 74% to 70% of attendance need to apply for condonation in the prescribed form with the prescribed fee. Students who have earned 69% to 60% of attendance need to apply for condonation in the prescribed form with the prescribed fee along with the Medical Certificate. Students who have below 60% of attendance are not eligible to appear for the End Semester Examination (ESE). They shall re-do the semester(s) after completion of the programme

Examination

The examinations shall be conducted separately for theory and practical's to assess (remembering, understanding, applying, analysing, evaluating, and creating) the knowledge required during the study. There shall be two systems of examinations viz., internal and external examinations. The internal examinations shall be conducted as Continuous Internal Assessment tests I and II (CIA Test I & II).

Internal Assessment

The internal assessment shall comprise a maximum of 25 marks for each subject. The following procedure shall be followed for awarding internal marks.

Sr.No	Content	Marks
1	Average marks of two CIA test	15
2	Seminar/group discussion/quiz	5
3	Assignment/field trip report/case study report	5
Total		25 Marks

Theory -25 marks

Practical -25 Marks

Sr.No	Content	Marks
1	Major Experiment	10 marks
2	Minor Experiment	5 marks
3	Spotter $(2x 5/4 x4)$ or any other mode	10 marks
Total		25 Marks

Project/Dissertation/internship-50 Marks (assess by Guide/incharge/HOD/supervisor)

Sr.No	Content	Marks
1	Two presentations (mid-term)	30 Marks
2	Progress report	20 Marks
Total		50 Marks

External Examination

- □ There shall be examinations at the end of each semester, for odd semesters in the month of October / November; for even semesters in April / May.
- A candidate who does not pass the examination in any course(s) may be permitted to appear in such failed course(s) in the subsequent examinations to be held in October / November or April / May. However, candidates who have arrears in Practical shall be permitted to take their arrear Practical examination only along with Regular Practical examination in the respective semester.
- □ A candidate should get registered for the first semester examination. If registration is not possible owing to shortage of attendance beyond condonation limit / regulation prescribed OR belated joining OR on medical grounds, the candidates are permitted to move to the next semester. Such candidates shall re-do the missed semester after completion of the programme.
- □ For the Project Report/ Dissertation Work / internship the maximum marks will be 100 marks for project report evaluation and for the Viva-Voce it is 50 marks (if in some programmes, if the project is equivalent to more than one course, the project marks would be in proportion to the number of equivalent courses).
- □ Viva-Voce: Each candidate shall be required to appear for Viva-Voce Examination (in defense of the Dissertation Work /Project/ internship).

Scheme of External Examination (Question Paper Pattern)

Theory - Maximum 75 Marks

Section A	10 questions.All questions carryequal marks.(Objective typequestions).	10 x 1 = 10 Marks	10 questions – 2 each from every unit
Section B	5 questions Either / or type like 1.a (or) b. All questions carry equal marks.	5 x 5 = 25 Marks	5 questions – 1 each from every unit
Section C	5 questions Either / or type like 1.a (or) b. All questions carry equal marks	5 x8 = 40 Marks	5 question -1 each from every unit

Practical - Maximum 75 Marks

Section A	Major experiment	15 Marks
Section B	Minor experiment	10 Marks
Section C	Experimental setup	5 Marks
Section D	Spotters (5 x 5 marks)	25 Marks
Section E	Record note	10 Marks
Section F	Vivo voce	10 Marks

Dissertation /Project report/Internship report Scheme of evaluation

Dissertation /Project report/Internship report	100 Marks
Vivo voce	50 Marks

Results

The results of all the examinations will be published through the Department where thestudent underwent the course as well as through University Website.

Passing minimum

- □ A candidate shall be declared to have passed in each course if he/she secures not less than 40% marks in the End Semester Examinations and 40% marks in the Internal Assessment and not less than 50% in the aggregate, taking Continuous assessment and End Semester Examinations marks together.
- □ The candidates not obtained 50% in the Internal Assessment are permitted to improve their Internal Assessment marks in the subsequent semesters (2 chances will be given) by writing the CIA tests and by submitting assignments.
- □ Candidates, who have secured the pass marks in the End-Semester Examination and in the CIA but failed to secure the aggregate minimum pass mark (E.S.E + C I.A), are permitted to improve their Internal Assessment mark in the following semester and/or in University examinations.
- A candidate shall be declared to have passed in the Project / Dissertation / Internship if he /she gets not less than 40% in each of the Project / Dissertation / Internship Report and Viva-Voce and not less than 50% in the aggregate of both the marks for Project Report and Viva-Voce.
- □ A candidate who gets less than 50% in the Project / Dissertation / Internship Report must resubmit the thesis. Such candidates need to take again the Viva-Voce on the resubmitted Project report.

Grading of the Courses

Once the marks of the CIA and ESE for each of the courses are available, they will be added. The marks, thus obtained will then be graded as per the scheme provided in the following.

MARKS	GRADE POINT	LETTER GRADE
96 and above		S+
91 - 95	9.5	S
86 - 90	9.0	D++
81 - 85	8.5	D+
76 - 80	8.0	D
71 - 75	7.5	A++
66 - 70	7.0	A+
61 - 65	6.5	Α
56 - 60	6.0	В
50-55	5.5	С
Below 50	0	RA

From the second semester onwards the total performance within a semester and continuous performance starting from the first semester are indicated respectively by **Grade Point Average (GPA) and Cumulative Grade Point Average (CGPA).** These two are calculated by the following formulate

```
n
\Box Ci Gi
i = 1
GPA = n
\Box Ci
i = 1
```

Where 'Ci' is the Credit earned for Course i in any semester; 'Gi' is the Grade Point obtained by the student for Course i and 'n' is the number of Courses **passed** in that semester.

CGPA (Cumulative Grade Point Average) = Average Grade Point of all the Courses passed starting from the first semester to the current semester.

Classification of the successful candidate

A candidate who secured not less than 60% of the aggregate marks in the whole examination shall be declared to have passed the examination in First class. All other successful candidates shall be declared to have passed in the Second class. The candidate who obtains 76% of marks in the aggregate shall be deemed to have passed the examination in first class with distinction provided they should have passed all the examinations at the first appearance. Candidates who passed all the examinations prescribed for the course in the first instance and within two academic years from the year of admission to the course are alone eligible for university ranking.

A candidate is deemed to have secured the first rank provided if he/she should have passed all the papers in the first attempt itself and should have secured the highest Cumulative grade point average (CGPA).

Each student should have taken --- credits as a core course, -- credits as a major elective; --- credits as non-major elective, ---- credits as dissertation / project work / internship, in addition, MOOCs courses as extra credits, thus totaling at least 90 credits are required to complete PG degree programme.

Classification of the final result

The final result of the candidate shall be based only on the CGPA earned by the candidate.

- a) Successful candidates passing the examinations and earning CGPA between 6.01 and 7.50 shall be declared to have passed in First Class and those who earned CGPA between 5.00 and 6.00 shall be declared to have passed in Second Class.
- b) Candidates earning CGPA between 7.51 and 9.00 in the first appearance within the prescribed duration of the programme shall be declared to have passed in First Class with Distinction and those who earned CGPA 9.01 and above in the first appearance within the prescribed duration of the programme shall be declared to have passed in First Class Exemplary in the respective Programmes.
- c) Absence from an examination shall not be taken as an attempt.

Final result

CGPA	Letter Grade	Classification of Final
		Results
9.51 and above	S+	First class – Exemplary
9.01 - 9.50	S	
8.50 - 9.00	D++	
8.01 - 8.50	D+	First class – Distinction
7.50 - 8.00	D	
7.01 - 7.50	A++	
6.51 - 7.00	A+	First Class
6.01 - 6.50	Α	
5.51 - 6.00	В	Second Class
5.00 - 5.50	С	
Below 5.00	RA	Reappear

Maximum duration of the completion of the programme

GAPPA UNIVERSITY

The maximum period for completion of M.Sc., programme in shall not exceed eight semesters continuing from the first semester.

Conferment of the Master's Degree

A candidate shall be eligible for the conferment of the Degree only after he/ she has earned the minimum required credits for the Programme prescribed therefor (i.e. 90 credits). Programme).

Village Extension Programme

The Sivaganga and Ramnad districts are very backward districts where a majority of people Lives in poverty. The rural mass is economically and educationally backward. Thus the aimof the introduction of this Village Extension Programme is to extend out to reach environmental awareness, social activities, hygiene, and health to the rural people of this region. The students in their third semester have to visit any one of the adopted villages within the jurisdiction of Alagappa University and can arrange various programs to educate the rural mass in the following areas for three day based on the theme.1. Environmental awareness 2. Hygiene and Health. A minimum of two faculty members can accompany the students and guide them.

S. Course Core			Title of the paperT/PCrown			Hours/	Μ	arks	
No	Code					Week			
			I Semester				I	E	Total
1	533101	Core 1	Introduction to Quantum Physics	Т	4	4	25	75	100
2	533102	Core 2	Basics of Materials Science	Т	5	5	25	75	100
3	533103	Core 3	Basic Biotechnology	Т	4	4	25	75	100
4	533104	Core 4	Introduction to Nanoscience	Т	4	4	25	75	100
5	533107	Core 5	Nano Science and Technology Lab-I	Р	4	8	25	75	100
			(Nanophysics Experiments)	1	-	0	25	15	100
6	533501/	DSE*1	Thin Film Technology and Characteristics/	Т	3	3	25	75	100
	533502		Condensed Matter Physics	1	5	5	23	15	100
			Library / Yoga/ counseling/Field trip	-	-	2	-	-	-
					24	30	150	450	600
			II Semester						
7	533201	Core 6	Synthesis of Nanomaterials	Т	5	5	25	75	100
8	533202	Core 7	Characterization of Nanomaterials	Т	4	4	25	75	100
9	533203	Core 8	Applications of Nanomaterials	Т	5	5	25	75	100
10	533207	Core 9	Nano Science and Technology Lab – II (Nano-	Р	5	10	25	75	100
			chemistry Experiments)	Р	5	10	25	75	100
11	533503/	DSE*2	Information Storage Materials and Devices/	т	3	2	25	75	100
	533504		Computer Simulation and Modelling			3	25	75	100
12		NME	Non-Major Elective**	Т	2	3	25	75	100
13			Self-learning course (SLC) –MOOCs***	- 1	Ex	tra credi	t	1 1	
		1			24	30	175	525	700
			III Semester						
14	533301	Core 10	Nano Biotechnology and Nano Medicine	Т	4	4	25	75	100
15	533302	Core 11	Nanoelectronics and Nanodevice	Т	4	4	25	75	100
16	533303	Core 12	Nanoengineering	Т	4	4	25	75	100
17	533304	Core 13	Microsystem Technology	Т	4	4	25	75	100
18	533307	Core 14	Nano Science and Technology Lab –III	P	4	0	25	7.5	100
			(Nano-biotechnology Experiments)	Р	4	8	25	75	100
19	533505/	DSE*3	Polymer Nanocomposites /						
	533506		Nanobiomaterials and Nanobiotechnology for	Т	3	3	25	75	100
			Tissue Engineering						
20	-	NME	Non-Major Elective**	Т	2	3	25	75	100
21	-		Self-learning course (SLC) –MOOCs***		Ex	tra credi	t	1	
					25	30	175	525	700
			IV Semester		r	1		ı 1	
22	533401	Core 15	Nanotoxicology	Т	4	4	25	75	100
23		Core 16	****Dissertation Work or Internship	-					
			Programme	Р	13	26	50	150	200
m · •	1	1		L	17	30	50	150	200
Total					90	120	550		2200

M.Sc., Nanoscience and Technology Programme structure

	Discipline Specific Elective Courses (DSE)								
1	533501	Thin Film Technologies and Characteristics	3	3	25	75	100		
2	533502	Condensed Matter Physics	3	3	25	75	100		
3	533503	Information Storage Materials and Devices	3	3	25	75	100		
4	533504	Computer Simulation and Modelling	3	3	25	75	100		
5	533505	Polymer Nanocomposites	3	3	25	75	100		
6	533506	Nanobiomaterials and nano	3	3	25	75	100		
		biotechnology fortissue engineering							

Non-M	lajor Elec	tive Courses** (NME)					
1.	-	Introduction to Nano Scale in Science andTechnology	2	3	25	75	100
2.	-	Nanotechnology and Advanced drug deliverySystem	2	3	25	75	100

*DSE – Discipline Specific Elective -Student Choice and it may be conducted by parallel sections.

** NME -Non Major Elective -Student have to select courses offered by other (Faculty) departments.

*** SLC- Self Learning Courses -Voluntary basis

**** Dissertation / internship report –Marks -Vivo-voce (50) + thesis (100) + internal (50) =200

T-Theory P-Practical

			Semester - I			
Core	Cou	rse code	Introduction to Quantum Physics	Т	Credits: 4	Hours: 4
	53	33101				
			Unit –I	1	1	
Object	ivo 1	To ach	ieve an understanding of the theory of o	luan	tum mechan	ics, and
Object	ive I	an ab	ility to apply the quantum theory to impo	ortan	t physical sy	stems
Vecto	r & Sj	pecial Fu	nction: Vector space, linear transformation	- Inv	verse transfor	mation, -
Deterr	ninatio	on of Eig	en values and Eigen vectors. Beta and Gan	nma	functions, Le	gender's,
Hermi	te and	Laguerre	polynomials and Bessel functions.			
		The stu	dents should be able to understand the b	asic	and advance	ed
Outcor	ne 1	concept physics	s to analyze the Quantum Mechanics	and	mathematic	al K2
			Unit-II			
Object	ive 2	To mak	e them understand the basis and basics o	f Qu	antum Mech	anics
The P	hysica	al Basis (of Quantum Mechanics: - Limitation of	classi	ical physics -	– Plank's
Quant	um hy	pothesis-	Einstein's Photoelectric effect- wave natur	e of	particle Wave	e-particle
duality	y, Sch	rödinger	time depended independent wave equation	ns ar	nd expectatio	n values,
Uncer	tainty	principle.	SE ALAGAPPA UNIVERSITY 8			
Outcor	ne 2	Scientif	ically improvement of new application	ions	of quantu	m K2
Juicol	nc 2	physics	in computation			
			Unit III			
Object	ive 3	To teac	h the theor <mark>eti</mark> cal <mark>an</mark> d conceptual <mark>a</mark> spects o	of Qu	iantum tunn	eling
Bound	d Stat	es & Qi	antum Tunneling: - Free particle - M	omer	ntum eigen f	unctions,
Energy	y leve	ls of a	particle – Infinite square well in one(1	D),	two (2D), a	nd three
			ensity of states – Confined carriers - Elec			gation in
device	es - Qu	antum co	nfinement - Penetration of a barrier – Tunne	el eff	ect.	
Outcor	ne 3		ts understand the necessity for quantum			ne K3
outcol	ne o	analysis	s of physical systems of atomic and solid-s	state	physics.	
			Unit IV			
Object	ive 4		oduce the optical behavior of quantum	parti	icles and the	e various
		effects a	associated with it			
Optica	al pro	perties a	and interactions of nanoscale materials:	- S	Size-depender	nt optical
proper	ties: A	bsorption	n and emission, Basic quantum mechanics of	of lin	ear optical tra	ansitions,
Genera	al con	cept of	excitons, Wannier excitons, Size effects	in h	igh-dielectric	-constant
materi	als, Si	ze effects	in П-conjugated systems, strongly interact	ing Γ	I -conjugated	systems:
			Size-dependent electromagnetic interaction	s: Pa	rticle-particl	e Forster
resona	int ene	rgy trans	fer (FRET).			
Outco	ome 4		t analyze able to interpret certain basic or of quantum particles	and	fundament	al K5
			Unit V			
Object	ive 5	To beco	ome aware of the necessity for quantum r	neth	ods in the ar	nalysis of
		nhysica		e		
		physica	l systems of atomic and solid-state physic	.D		
Semic	onduc		d-Gap Engineering: - Energy bands in		ds, the E-k	diagram,
		tor Ban		soli		0
Densit	y of st	etor Ban ates, Occ	d-Gap Engineering: - Energy bands in	soli Ferm	i levels, p-n j	unctions,

Outcome 5	Student have opp	ortunity to	create the ap	plications of q	uantum	K3
	mechanics in phys	ics, enginee	ring, and relat	ed fields		
Suggested F	leadings:-					
Vaughn, M. 7	T. (2008). Introductio	on to mathen	natical physics.	Weinheim: Wil	ey-VCH.	
Aruldhass. G	(2004), Quantum Me	echanics, Prin	ntice hall of Inc	lia Pvt Ltd. New	/ Delhi.	
Dass, H. K., &	& Bhārmā, R. (2015)	. Mathemati	cal Physics: Ra	ama Nagar, New	Delhi: S.	Chand
& Comp	pany Pvt.					
Griffiths, D.	J. (2017). Introdu	uction to q	uantum mech	anics. Cambrid	dge: Can	nbridge
Univers	ity Press.					
Bhattacharya,	, P. (2009). Semicor	nductor opto	electronic dev	vices. New Dell	hi: Prentic	e Hall
India.						
Vaughn, M. 7	T. (2008). Introductio	on to mathen	natical physics.	Weinheim: Wil	ey-VCH.	
Tsurumi, T. (2010). Nanoscale ph	ysics for ma	terials science.	Boca Raton, FL	L: CRC Pro	ess.
Singh, J. (1	995). Semiconductor	r optoelectr	onics: Physics	s and technolo	gy. New	York:
McGrav	v-Hill.					
Online Resou	irces					
https://epgp	.inflibnet.ac.in/view_	_search.php?	&category=190	026&ft=et		
http://simon	s.hec.utah.edu/Newl	UndergradB	ok/Chapter1.p	<u>df</u>		
https://epgp	.inflibnet.ac.in/view_	f.php?categ	ory=1852			
https://www	.cl.cam.ac.uk/teachi	ng/0910/Qua	ntComp/notes.	pdf		
https://indic	o.cern.ch/event/8705	51 <mark>5/attachme</mark>	nts/2217802/3	755127/HGrayQ	OCLecture	<u>1.pdf</u>
K1-Remember	r K2-Understand	K3- Apply	K4-Analyze	K5-Evaluate	K6-Cre	ate
	Cor	u <mark>rs</mark> e designed	d by <mark>Dr. G. Ra</mark>	malingam, Ass	istant Pro	ofessor
		FILL	112			

Course Outcome Vs Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M(2)	L(1)	M(2)	S(3)	M(2)	S(3)	L(1)	S(3)	M(2)	L(1)
CO2	S(3)	S(3)	M(2)	L(1)	S(3)	M(2)	M(2)	S(3)	S(3)	S(3)
CO3	L(1)	S(3)	M(2)	S(3)	M(2)	L(1)	L(1)	S(3)	M(2)	L(1)
CO4	S(3)	M(2)	S(3)	S(3)	L(1)	S(3)	M(2)	S(3)	M(2)	(-)
CO5	M(2)	S(3)	L(1)	M(2)	M(2)	S(3)	M(2)	M(2)	M(2)	-
W.AV	2.2	2.4	2	2.4	2	2.4	2	2.8	2.2	1

S-Strong(3), M-Medium(2), L- Low(1) Course Outcome Vs Programme Specific Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	L(1)	L(1)	M(2)	L(1)	L(1)
CO2	L(1)	M(2)	L(1)	M(2)	S(3)
CO3	M(2)	M(2)	S(3)	M(2)	L(1)
CO4	M(2)	S(3)	-	L(1)	L(1)
CO5	S(3)	L(1)	L(1)	L(1)	-
W.AV	1.8	1.8	1.4	1.4	1.2

S-Strong(3), M-Medium(2), L- Low(1)

				Semester – I				
Core	Course	e code	Basics of	Materials Science	e T	Credits: 5	Hours	s: 5
	533	3102						
				Unit - I	1			
Obje	ective 1	To	make the	e student unde	rstand	the crystal	structure	
		arr	angement					
Crys	stal Syn	nmetry	and Structu	re Determination	n: - The	Growth and	form of cr	ystal -
Crys	tal syste	m - Spa	ce lattices and	d Unit cell - Crys	tal Symn	netry-planes an	d Miller ind	lices –
Stati	stical th	ermody	namic of cr	ystals - symmetr	y distrib	ution of crys	tals – Sch	errer's
equa	tion-crys	stalline	size determi	nation -Imperfec	tions in	Crystal-Schot	tky and F	Frenkel
defec	ets.							
Outo	come 1	Under	standing the	crystallite basics	and defe	ctive structur	es	K1
				Unit-II				
Obje	ective 2	To ma	ke them und	erstand the vario	ous physi	cal and chem	ical proper	ties of
		solid n	naterials					
Stru	cture of	f Solids	: - The cryst	alline - Noncrysta	alline sta	tes – Classific	ation of So	olids -
Amo	rphous S	Solids, C	Crystalline Sol	ids - Properties of	Solids -	Mechanicalpro	operties, Ele	ectrical
prop	erties, O	ptical P	roperties, Mag	gnetic properties,	Energy 2	Bonding Struct	tures in soli	d, low
energ	gy excit	ations:	phonons, pla	ismons, Magnons	, Polaro	ns, Polaritons-	Inorganic	solids
Cova	alent sol	ids, Me	tal and alloy	rs, <mark>Ionic solid</mark> s, M	1 <mark>olec</mark> ular	solids, Struct	ture of sili	ca and
silica	ates.			SIPAN				
Outo	come 2	Familia	rize with var	i <mark>o</mark> us solid structu	res and j	physical prope	erties	K2
				Unit - III	112			
Obje	ective 3	To ac	quire basic	principles of	Metals,	Semiconduc	ctors and	their
		functio	onalities					
Meta	als, Sem	icondu	ctors and Die	electric materials	: - Meta	ls - Atomic St	ructure - pl	nysical
and	electron	ic prop	erties, therm	al conductivity	- Electri	cal conductivi	ity, non-me	etals ·
Semi	iconduct	ors - ene	ergy gap in so	lids – band structu	res-excite	ons, types		
of Se	emicond	uctors, S	emiconductor	r devices.			<u> </u>	
Outo	come 3	Capabl	e to distingui	ish the materials	in term o	of energy bond	ls	K4
				Unit - IV				
Obje	ective 4	To fa	acilitate the	e students to	obtain	polymeric	materials	
			teristics.					
•			•	eric Materials -		-	•	
			•	mer Crystallinity -		-		
				barrier – ionic		• •	-	•
				ure of long chain				
				– macroscopic d	eformatio	on - viscoelas	tic deforma	tion -
			crystalline pol	-				
Outo	come 4		0	of polymers	physica	l chemical	and bio	K2
		degrad	lable propert	ties				

	Unit - V	
Objective 5	To obtain the knowledge on important defects in the materials	
Crystals and	I defects: - Defects in solid structures – point defects – extended defects	
– Planar Def	Fects - dislocations - grain boundaries - role of the defects on the proper	ties of
solids – grain	n boundary volume in microscopic and nanocrystals – defects in microscop	oic and
nanocrystals	- surface effects on the properties - defects due to severe plastic deformation	ation –
stacking faul	ts – Hall Petch behavior –deformation in FEE and HCP nanostructures.	
Outcome 5	Analysing the defects in the solids and the micro structural de	K2
	formation principles	
Suggested Re	adings:-	
Atkins, P.	W., Paula, J. D., & Keeler, J. (2019). Atkins physical chemistry. Oxford	:
OxfordUn	iversity Press.	
Barnham,	K., & Vvedensky, D. D. (2001). Low-dimensional semiconductor	
structures.	: fundamentals and device applications. New York: Cambridge	
University	Press.	
Byrappa, 1	K., & Ohachi, T. (2003). Crystal growth technology. Norwich, NY: Wil	liam
Andrew P	ub.(2003). Materials science and technology. Washington, D.C.: Nati	onal
Academie	s Press.	
CallisterW	V, D. (2006). <i>Materials science and engineering an introduction</i> . La Ha	bana:
EditorialF	élix Varela.	
Chung, Y	wah. (2007). Introduction to materials science and engineering. Boca	Raton:
CRC/Tayl	or & Francis.	
Fischer,	T. E. (20 <mark>09).</mark> Materials science for engineering students. Amst	terdam:
Elsevier/A	cademicPress.	
Goddard,	W. A. (2002). Handbook of nanoscience, engineering, and technology. B	oca
Raton, FL:	CRC. Karas, G. V. (2005). New developments in crystal growth resear	rch.
New York	: Nova SciencePublishers.	
Lu, G. Q.	, & Zhao, X. S. (2006). Nanoporous materials: science and engineering	<u>.</u>
London:In	nperial College Press.	
Markov, I	. V. (2017). Crystal growth for beginners: fundamentals of nucleation, c	rystal
growth,an	d epitaxy. New Jersey: World Scientific.	
Narayan, I	R. (1983). An introduction to metallic corrosion and its prevention. New	Delhi:
Oxford&	IBH.	
Pillai, S. C	D. (2018). Solid state physics. London, UK: New Academic Science, an imp	print of
NewAge I	International (UK) Ltd.	
Raghavan	, V. (2015). Materials science and engineering: a first course. Delhi: F	ΡΗΙ
LearningP	Private Limited.	
Raghavan	, Y. S. (2010). Nanostructures and nanomaterials: synthesis, properties	
andapplic	ations. New Delhi: Arise Publishers & Distributors.	
Shackelfor	rd, J. F. (2016). Introduction to materials science for engineers. Pear	son
Education	:Harlow.	
Wasa, K.	, Kitabatake, M., & Adachi, H. (2011). Thin films material technolo	gy:
sputtering	of compound materials. Berlin: Springer.	
Rethwisch	n, David G., and Callister, William D. (2020) Materials Science of	and
Engineerii	ng: An Introduction, WileyPLUS Card with Loose-leaf Set. Wiley.	

Sutton, Adrian P. (, 2021). Concepts of Materials Science. United Kingdom, OUP Oxford

Online Resources

https://epgp.inflibnet.ac.in/view_f.php?category=1640 https://epgp.inflibnet.ac.in/view_f.php?category=1673

1	1.01	= 1 1	0,						
K1-Remember	X1-Remember K2-Understand		K4-Analyze	K5-Evaluate	K6-Create				
Course designed by Dr. P. Shakkthivel, Professor									

					0					
	PG1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1		L(1)	S(3)	M(2)	M(2)	S(3)	L(1)	L(1)	M(2)	L(1)
	M(2)									
CO2	S(3)	S(3)	M(2)	L(1)	S(3)	L(1)	M(2)	L(1)	M(2)	M(2)
CO3	M(2)	S(3)	M(2)	L(1)	M(2)	M(2)	S(3)	S(3)	S(3)	L(1)
CO4	M(2)	M(2)	M(2)	L(1)	L(1)	L(1)	L(1)	L(1)	M(2)	M(2)
CO5	S(3)	M(2)	M(2)	M(2)	M(2)	L(1)	M(2)	L(1)	M(2)	S(3)
W.AV	2.4	2.2	2.2	1.4	2	1.4	1.8	1.4	2.2	1.8

Course Outcome Vs Programme Outcomes

S- Strong(3), M-Medium(2), L- Low(1)

Course Outcome Vs Program Specific Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	L(1)	S(3)	S(3)	S (3)	S (3)
CO2	M(2)	M(2)	M(2)	S(3)	M(2)
CO3	S(3)	M (2)	M(2)	M(2)	M(2)
CO4	M(2)	L(1)	S (3)	S(3)	S(3)
CO5	M(2)	M(2)	M(2)	M(2)	S(3)
W.AV	2	2	2.4	2.6	2.6

S-Strong(3), M-Medium(2), L-Low(1)

			Semester – I				
Core	Cours	e code	Basic Biotechnology	Т	Credits: 4	Ног	ırs: 4
	533	103					
			Unit -I				
Objecti	ive 1	To le	arn about the structure and funct	tion o	of biomolecu	les in	living
Ū		syster					0
Biotech	nology:	- Bas	ic concepts of Biotechnology - Stru	icture	of atom and	d mole	cules,
Bondin	g in biol	ogical s	system, Buffers in biological system; S	Struct	ure and functi	ion of c	ells –
prokary	otes and	l eukary	otes, Structure and organization of m	nembr	ane, membrai	ne tran	sport;
Structur	re, class	ificatior	and biological importance of carbo	hydra	tes, amino ad	cids, Pr	otein,
nucleic	acid and	l lipids;	Enzymes - classification, kinetics and	appli	cation.		
		Learr	ers acquire basic knowledge on the	e buil	ding blocks o	of the	K1
Outcon	ne 1	macro	omolecules, its chemical properties a	and tl	heir importai	nce in	
		living	system				
			Unit II				•
Objecti	ive 2	To sti	rengthen the knowledge on various c	lonin	g and expres	sion ve	ctors
Geneti	: Engin	eering:	- Scope and Milestones in Genetic	Engin	eering- Gene	Expre	ssion;
Molecu	lar tools	used in	n Genetic Engineering - DNA modif	ying e	enzymes, vect	ors and	d host
system;	Gene of	loning	- ethical issues, Merits and Demerit	ts of	cloning; - Ge	ene The	erapy;
Biotech	nologica	al applie	cations of rDNA technology.				
Outcon	no ?	Stude	nts will attai <mark>n</mark> in <mark>depth knowledge</mark> o	n cen	itral dogma o	of life,	K2
Outcon		genet	ic engineerin <mark>g</mark> and gene therapy				
			Unit III				
	7	To ma	ake the students <mark>un</mark> derstand the con	cepts	of transgeni	icplant	s and
Objecti	lve 5	its ap	plication.				
Plant I	Biotechn	ology:	- Plant cell and Tissue culture - In	vitro	o culture met	hodolo	gies -
Callus	Culture,	Cell S	Suspension Culture, Organ Micro-cu	lture,	plant micro-	propag	ation,
Somatio	e Embry	ogenesi	s; Applications of Plant Genetic Eng	gineer	ing in crop in	nprove	ment-
green h	ouse tecl	nnology	, plants as bioreactors, transgenic plan	nts an	d its application	on.	
			ers will apply the knowledge of cell		-		K3
Outcom	ne 3	micro	and macro level manipulations of pl	ants	for environm	ental	
		monito	oring and health care applications				
		1	Unit IV				
Objecti	ive 4	-	ovide insight on animal cell cultu	re ar	nd its applica	ation i	n the
Ū.			pment of transgenic animals				
			: - Scope of animal biotechnology -		-		
			media, growth factors, characteristic				•
			cell lines, Maintenance of cell lines		-		
			ansgenic animal production – Metho	ds of	gene transfer	, Trans	sgenic
animal	model fo	r	in disorders.	<u> </u>			***
0			nts will apply their knowledge on an				K3
Outcon	ne 4		pment of transgenic animals a	nd	vaccines for	the	
		betteri	nent of society				

	Unit V										
	To impart knowledge on use of microbes for bioremediation pur	pose									
Objective 5	and energy production.	•									
Microbial Biot	technology: - Environmental pollution – Types, Causes, Effects and Co	ntrol									
	remediation -concepts, bioremediation of toxic metal ions, phytoremedia										
Microbial leaching mechanism; Bioactive metabolites - Primary metabolites, Secondary											
metabolites, Enzyme Technology, Single cell protein, Biomass and Bio-energy, Bio-gas											
production.											
_	Learners will acquire knowledge on mechanism of microbial K6										
o (-	based bioremediation leading to development of technology to										
Outcome 5	combat environmental pollution and sustainable energy										
	production										
Suggested Read	dings:-										
Voet, D., & Vo	oet, J. G. (2021). Biochemistry. J. Wiley & Sons.										
Nelson D.L., C	Cox, M.M. (2021). Lehninger Principles of Biochemistry (8th ed), Macm	illan									
Learning											
Kennelly, P., E	Botham, K., McGuinness, O., Rodwell, V., Anthony Weil, P. (2022). Har	per's									
Illustrate	ed Biochemistry. (32 nd ed.) McGraw Hill / Medical.										
Primrose, S. (2	2014). Principles of Gene manipulation and genomics (Seventh Edition	ed.).									
Blackwe	ell.										
Al-Rubeai, (20	014). Animal Cell culture. Springer International Publishing.										
Zahoorullah, S	S.(2015). A Text book of Biotechnology. SM online LLC										
Gayatri, (2015	5). Plant Tissue Culture: Protocols in Plant Biotechnology. Alpha Sci	ence									
Internati	ional.										
Brown, T. (200	06). Gene cloning and DNA analysis (Fifth edition ed.). Blackwell.										
Freshney, R.	I. (2015). Culture of Animal cells: A Manual of Basic technique of	and									
Specialis	sed Application (Seventh Edition ed.). Wiley Blackwell.										
Godbey, W. ((2014). An Introduction to Biotechnology: The Science technology of	and									
medical	applications. Academic Press, Elseiver.										
Sambrook, J. ((2007). A Laboratory Manual, Cold spring harbour laboratory press. C	old									
spring h	arbour laboratory press.										
Smith, R. (20	13). Plant tissue culture experiment and techniques (Third edition edi	d.).									
Academ	ic Press, Elseiver.										
Stewart, C. N	I. (2016). Plant Biotechnology and genetics: Principles, Techniques a	and									
Applicat	tions (Second Edition ed.). John Wiley and Sons										
Online Resource	<u>ces</u>										
	gp.inflibnet.ac.in/view_f.php?category=1826										
	gp.inflibnet.ac.in/view_f.php?category=1038										
	gp.inflibnet.ac.in/loaddata.php?action=loadpaperlist1&maincat=3										
	gp.inflibnet.ac.in/ahl.php?csrno=5.https://nptel.ac.in/courses/102105034/										
	tel.ac.in/courses/10210301/										
K1-Remember	K2-Understand K3- Apply K4-Analyze K5-Evaluate K6-Cr	eate									
	Course designed by Dr. N. Suganthy, Assistant Prof	essor									

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M(2)	S(3)	M(2)	M(2)	S (3)	M(2)	L(1)	L(1)	M(2)	L(1)
CO2	M (2)	S (3)	S (3)	S (3)	M(2)	M(2)	L(1)	L(1)	M(2)	M (2)
CO3	S (3)	S (3)	S (3)	S (3)	M(2)	M(2)	M(2)	M(2)	M(2)	S (3)
CO4	S (3)	S (3)	S (3)	S (3)	M(2)	S (3)	M(2)	M(2)	S (3)	S (3)
CO5	S (3)	M(2)	M(2)	M(2)	S (3)	S (3)				
W.AV	2.6	3	2.8	2.8	2.4	2.2	1.6	1.6	2.4	2.4

Course Outcome Vs Program Outcomes

S-Strong(3), M-Medium(2), L- Low(1)

Course Outcome Vs Program Specific Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M(2)	S(3)	S (3)	M (2)	M (2)
CO2	M (2)	S (3)	<mark>S (3</mark>)	M (2)	M (2)
CO3	S (3)	S (3)	S (3)	M (2)	M (2)
CO4	S (3)	S (3)	L(1)	S (3)	S (3)
CO5	S (3)	S (3)	S (3)	S (3)	S (3)
W.AV	2.8	3	2.6	2.4	2.4

S-Strong(3), M-Medium(2), L- Low(1)

Core	Cour 5	rse Code 33104	In	troduction	to Nanosc	cience	Т	Credits: 4	Hours: 4		
					Unit -I						
Object	tive 1	Apply key	concep	ots in ma	terials sci	ence, ch	mistry,	physics, bio	logy and		
Object		engineering	g to the fi	ield of nan	otechnolog	gy.					
		•		0				hnology, Impl			
								ale: Different			
Nanon	naterials	-metals, semic	conductor	rs, composi	ite materials	s, Ceramic	s, Alloys	s, And Polyme	rs.		
Outco	me 1		-				physics	, chemistry ,	K2		
outeo		biology and	l nanoen			logy					
				١	Unit - II						
Object	tive 2	-		nanotechn	ology sol	utions i	desig	n , enginee	ering and		
Ũ		manufactur	0								
		0					-	cles morpholo			
		-					ar and at	comic size-dim	nensionality		
and siz	ze depen								T		
Outco	me 2	Mastering in	dependent phenomena, Nanowires and Nanotubes, 2D films.2Mastering in design a nanoparticle morphology and engineering toolsK3								
			Ð	1	Unit - III	5					
Nano	materia	• -	als f Nanocr	nanocryst	als and	onal – one	dimensio	onal – two dim			
three size o	materia dimensi depende	nanomateri als: - Types of ional Nano st nt properties oulk and micr	als f Nanocr ructured –mechani oscopic s	nanocryst ystals – ze materials – ical , phys	als and ro dimensic - metals – s sical and cl ogical Nanc	onal – one semicondu hemical - omaterials	dimensio <mark>ctors</mark> –ce Unique	onal – two dim eramics and co ness in these	ensional – mposites–		
Nano three size o	materia dimensi depende ared to l	nanomateri ds: - Types of ional Nano sti nt properties- oulk and micr Learners d	als f Nanocr ructured -mechani oscopic s eveloped	nanocryst ystals – ze materials – ical , phys colids .Biolo the diff	als and ro dimensic - metals – s sical and cl ogical Nanc Ferent dim	onal – one semicondu hemical - omaterials tensional	dimensio <mark>ctors</mark> –ce Unique	onal – two dim eramics and co	ensional – mposites–		
Nano three size c comp	materia dimensi depende ared to l	nanomateri als: - Types of ional Nano st nt properties oulk and micr	als f Nanocr ructured -mechani oscopic s eveloped	nanocryst systals – ze: materials – ical , phys colids .Biolo the diff als and na	als and ro dimensic - metals – s sical and cl ogical Nanc Ferent dim	onal – one semicondu hemical - omaterials tensional	dimensio <mark>ctors</mark> –ce Unique	onal – two dim eramics and co ness in these	ensional – omposites– properties		
Nano three size c comp	materia dimensi depende ared to 1 me 3	nanomateri als: - Types of ional Nano st nt properties- bulk and micr Learners d particles, na	als f Nanocr ructured -mechani oscopic s eveloped anocryst	nanocryst ystals – ze materials – ical , phys olids .Biolo l the diff als and na	als and ro dimensic - metals – s sical and cl ogical Nanc ferent dim nomaterial Unit - IV	onal – one semicondu hemical - omaterials tensional Is	dimensio ctors –ce Unique structu	onal – two dim eramics and co ness in these res of nano	ensional – omposites– properties K6		
Nano three size c comp Outco Object	omateria dimensi depende ared to l me 3 tive 4	nanomateri als: - Types of ional Nano sti nt properties- bulk and micr Learners d particles, na Identify the	als f Nanocr ructured : -mechani oscopic s eveloped anocryst	nanocryst ystals – ze materials – ical , phys colids .Biola l the diff als and na U mic and in	als and ro dimensic - metals – s sical and cl ogical Nanc Gerent dim nomaterial Unit - IV	onal – one semicondu hemical - omaterials ensional ls lar potent	dimensio ctors –ce Unique structur	onal – two dim eramics and co ness in these res of nano gies and force	ensional – omposites– properties K6 s		
Nano three size o comp Outco Object Laws	materia dimensi depende ared to l me 3 tive 4 govern	nanomateri als: - Types of ional Nano sti nt properties- bulk and micr Learners d particles, na Identify the	als f Nanocr ructured -mechani oscopic s eveloped anocrysta interato aterials:	nanocryst ystals – ze materials – ical , phys colids .Biola l the diff als and na U mic and in	als and ro dimension - metals – s sical and clogical Nanco Gerent dimenomaterial Unit - IV Intermoleculo between a	onal – one semicondu hemical - omaterials nensional ls lar potent atoms and	dimensio ctors –ce Unique structur	onal – two dimeramics and conness in these res of nano gies and force	ensional – omposites– properties K6 s and grain		
Nano three size o comp Outco Object Laws bounda	materia dimensi depende ared to l me 3 tive 4 govern aries,	nanomateri als: - Types of ional Nano sti nt properties- bulk and micr Learners d particles, na Identify the ing Nanoma surface	als f Nanocr ructured -mechani oscopic s eveloped anocryst interato aterials: s	nanocryst ystals – ze materials – ical , phys colids .Biole l the diff als and na U mic and in - Forces	als and ro dimensio - metals – s sical and cl ogical Nanc Gerent dim nomaterial Unit - IV termolecul between a strong	onal – one semicondu hemical - omaterials ensional ls lar potent atoms and interr	dimensio ctors –ce Unique structur ial energ molecu	onal – two dimeramics and conness in these res of nano gies and force	ensional – omposites– properties K6 s and grain		
Nano three size c comp Outcor Object Laws bounda similar	materia dimensi depende ared to l me 3 tive 4 govern aries, ritiesand	nanomateri ds: - Types of ional Nano str nt properties- bulk and micr Learners d particles, na Identify the ing Nanoma surface	als f Nanocr ructured -mechani oscopic s eveloped anocrysta interato aterials: s etweeninte	nanocryst systals – ze: materials – ical , phys solids .Biolo I the diff als and na U mic and in - Forces – ermolecula	ro dimension - metals – s sical and clogical Nanc Gerent dimenomaterial Unit - IV Intermolecul between a strong randinterpa	onal – one semicondu hemical - omaterials ensional ls lar potent atoms and intern articleforce	dimensio ctors –ce Unique structur ial energ molecula s	onal – two dim eramics and co ness in these res of nano gies and force iles, particles r force	ensional – omposites– properties K6 s and grain es –		
Nano three size o comp Outcor Object Laws bounda similar	materia dimensi depende ared to l me 3 tive 4 govern aries, ritiesand	nanomateri ds: - Types of ional Nano str nt properties- bulk and micr Learners d particles, na Identify the ing Nanoma surface	als f Nanocr ructured -mechani oscopic s eveloped anocrysta interato aterials: s etweeninte o nanos	nanocryst systals – ze: materials – ical , phys solids .Biolo I the diff als and na U mic and in - Forces – ermolecula	ro dimension - metals – s sical and clogical Nanc Gerent dimenomaterial Unit - IV Intermolecul between a strong randinterpa	onal – one semicondu hemical - omaterials ensional ls lar potent atoms and intern articleforce	dimensio ctors –ce Unique structur ial energ molecula s	onal – two dimeramics and conness in these res of nano gies and force	ensional – omposites– properties K6 s and grain		
Nano three size o comp Outcor Object Laws bounda similar	materia dimensi depende ared to l me 3 tive 4 govern aries, ritiesand	nanomateri als: - Types of ional Nano st nt properties- bulk and micr Learners d particles, na Identify the ing Nanoma surface differencesbe Expertise te	als f Nanocr ructured -mechani oscopic s eveloped anocrysta interato aterials: s etweeninte o nanos	nanocryst systals – ze: materials – ical , phys solids .Biolo I the diff als and na U mic and in - Forces - ermolecula systems in	ro dimension - metals – s sical and clogical Nanc Gerent dimenomaterial Unit - IV Intermolecul between a strong randinterpa	onal – one semicondu hemical - omaterials ensional ls lar potent atoms and intern articleforce	dimensio ctors –ce Unique structur ial energ molecula s	onal – two dim eramics and co ness in these res of nano gies and force iles, particles r force	ensional – omposites– properties K6 s and grain es –		
Nano three size o comp Outco Object Laws bounda similar Outco	materia dimensi depende ared to l me 3 tive 4 govern aries, ritiesand me 4	nanomateri als: - Types or ional Nano str nt properties- bulk and micr Learners d particles, na Identify the ing Nanoma surface differencesbe Expertise to and potentia	als f Nanocr ructured -mechani oscopic s eveloped anocryst interato aterials: s etweeninte o nanos als	nanocryst systals – ze: materials – ical , phys solids .Biolo l the diff als and na U mic and in - Forces - ermolecula systems in	ro dimension or dimension or metals – s sical and closed ogical Nance ferent dimension ferent dimension for a strong randinterpanter intermolecu Unit - V	onal – one semicondu hemical - omaterials nensional ls lar potent atoms and intern articleforce llar and	dimensio ctors –co Unique structur ial energ molecu nolecula s interat	onal – two dim eramics and co ness in these res of nano gies and force iles, particles r force	ensional – omposites– properties K6 s and grain es – K4		
Nano three size o comp Outco Object Laws bounda similar Outco	materia dimensi depende ared to l me 3 tive 4 govern aries, ritiesand me 4	nanomateri als: - Types or ional Nano str nt properties- bulk and micr Learners d particles, na Identify the ing Nanoma surface differencesbe Expertise to and potentia	als f Nanocr ructured -mechani oscopic s eveloped anocryst interato aterials: s tweeninte o nanos als	nanocryst systals – ze: materials – ical , phys solids .Biola l the diff als and na l mic and in - Forces - ermolecula systems in e manufac	ro dimension or dimension or metals – s sical and clo ogical Nance ogical Nance ogical Nance or ent dimension for ent di	onal – one semicondu hemical - omaterials ensional ls lar potent atoms and intern articleforce ilar and	dimensio ctors – ce Unique: structur ial energ molecula s interat	onal – two dimeramics and conness in these res of nano gies and force alles, particles r force omic forces	ensional – omposites– properties K6 s and grain es – K4		
Nano three size o comp Outcor Object Laws bounda similar Outcor	materia dimensi depende ared to 1 me 3 tive 4 govern aries, ritiesand me 4 tive 5	nanomateri als: - Types or ional Nano str nt properties- bulk and micr Learners d particles , na Identify the ing Nanoma surface differencesbe Expertise to and potentia	als f Nanocr ructured -mechani oscopic s eveloped anocrysta interato aterials: s tweeninta o nanos als study the ers , CNT	nanocryst systals – zer materials – ical , phys solids .Biolo I the diff als and na U mic and in - Forces – ermolecula systems in the manuface F , fulleren	ro dimension ro dimension metals – s sical and clo ogical Nance ferent dimension ferent di ferent dimension ferent dimension	onal – one semicondu hemical - omaterials nensional ls lar potent atoms and interr atticleforce ilar and ocesses , orensic ap	dimensio ctors –co Unique structur ial energ molecula s interat healthca plication	onal – two dimeramics and conness in these res of nano gies and force alles, particles r force omic forces	ensional – omposites– properties K6 s and grain es – K4 including		
Nano three size o comp Outco Object Laws bounda similar Outco Object Advan	materia dimensi depende ared to I me 3 tive 4 govern aries, ritiesand me 4 tive 5 nced Na	nanomateri als: - Types of ional Nano str nt properties- bulk and micr Learners d particles , na Identify the ing Nanoma surface differencesbe Expertise to and potentia Apply to s paints, filto no Materials	als f Nanocr ructured -mechani oscopic s eveloped anocryst interato aterials: s etweeninte o nanos als study the ers , CNT s- Nanon	nanocryst systals – ze materials – ical , phys solids .Biola I the diff als and na I mic and in - Forces - ermolecula systems in the manufactor F , fullerent naterials and	calsandro dimensionro dimensionmetals – ssical and cloogical Nanceogical Nancecerent dimensionnomaterialUnit - IVtermoleculbetween astrongrandinterpantermoleculUnit - Vcturing promotenes , and fornd nanostrue	onal – one semicondu hemical - omaterials ensional ls lar potent intern articleforce lar and ocesses , orensic ap	dimensio ctors –co Unique structur ial energ molecula s interat healthca plication	onal – two dimeramics and conness in these res of nano gies and force iles, particles r force omic forces omic forces	ensional – omposites– properties K6 s and grain es – K4 bicity, self-		
Nano three size o comp Outcor Object Laws bounda similar Outcor Object Advan cleanir	materia dimensi depende ared to l me 3 tive 4 govern aries, ritiesand me 4 tive 5 nced Na ng – ant	nanomateri als: - Types or ional Nano str nt properties- bulk and micr Learners d particles, na Identify the ing Nanoma surface differencesbe Expertise to and potentia if ogging-Surf	als f Nanocr ructured -mechani oscopic s eveloped anocrysta interato aterials: s tweeninta o nanos als study the ers , CNT s- Nanon ace immo	nanocryst systals – ze: materials – ical , phys solids .Biolo I the diff als and na U mic and in - Forces – ermolecula systems in te manufac F , fulleren naterials an obilized pro-	ro dimension or dimension or metals – s sical and clo ogical Nanc ferent dimension ferent dimension for the second ferent dimension for the second between a strong randinterpa ntermolecue Unit - V cturing pro- nes, and for other nanostru- other Nano	onal – one semicondu hemical - omaterials nensional ls lar potent itoms and intern articleforce ilar and ocesses , orensic ap ctures in structures	dimensio ctors –co Unique structur ial energ molecula s interat healthca plication nature- s	onal – two dimeramics and conness in these res of nano gies and force iles, particles r force omic forces ure products uperhydrophol	ensional – omposites– properties K6 s and grain es – K4 bicity, self- Collection		
Nano three size o comp Outcor Object Laws bounda similar Outcor Object Advan cleanir and an	materia dimensi depende ared to l me 3 tive 4 govern aries, ritiesand me 4 tive 5 nced Na ang – anti alysis of	nanomateri als: - Types of ional Nano stant properties- bulk and micr Learners d particles, na Identify the ing Nanoma surface differencesbe Expertise to and potentia Apply to s paints, filtant ifogging-Surfa	als f Nanocr ructured -mechani oscopic s eveloped anocrysta interato aterials: s etweeninte o nanos als study the ers , CNT s- Nanon ace immo different	nanocryst systals – ze materials – ical , phys solids .Biola I the diff als and na I mic and in - Forces - ermolecula systems in te manufac F , fulleren bilized pro- types of critical	ro dimension ro dimension - metals – s sical and clo ogical Nano Gerent dim nomaterial Unit - IV termolecul between a strong randinterpa ntermolecu Unit - V cturing pro- nes , and for od nanostru- potein Nano ime scenes	onal – one semicondu hemical - omaterials ensional ls lar potent toms and intern atticleforce ilar and ocesses , orensic ap ctures in structures including	dimensio ctors – co Unique structur ial energ molecula s interat healthca plication nature- s Forensio drugs - b	onal – two dimeramics and conness in these res of nano gies and force illes, particles r force omic forces uperhydrophole c Applications:	kensional – properties K6 s and grain es – K4 bicity, self- Collection g, serology		
Nano three size o comp Outcor Object Laws bounda similar Outcor Object Advan cleanir and an and To	materia dimensi depende ared to l me 3 tive 4 govern aries, ritiesand me 4 tive 5 nced Na ng – anti alysis of oxicolog	nanomateri als: - Types of ional Nano stant properties- bulk and micr Learners d particles, na Identify the ing Nanoma surface differencesbe Expertise to and potentia Apply to s paints, filtant ifogging-Surfa	als f Nanocr ructured -mechani oscopic s eveloped anocrysta interato aterials: s tweeninta o nanos als study the ers , CNT s- Nanon ace immo different Cosmeti	nanocryst systals – ze: materials – ical , phys solids .Biolo I the diff als and na I the diff als an diff als als an diff als als als als als als als als als als	calsandro dimensiono metalsmetalssical and clogical Nancogical Nanccerent dimensionnomaterialUnit - IVtermoleculbetween astrongrandinterpantermoleculunit - Vcturing promotesnanostrueotein Nanoime scenesons, Textile	onal – one semicondu hemical - omaterials lensional ls lar potent itoms and intern rticleforce ilar and ocesses , orensic ap ctures in structures including es, Paints	dimensio ctors – co Unique structur ial energ molecula s interat healthca plication nature- s Forensio drugs - b	onal – two dimeramics and conness in these res of nano gies and force iles, particles r force omic forces uperhydrophole e Applications: plood splatterin	kensional – properties K6 s and grain es – K4 bicity, self- Collection g, serology		

Suggested Readings:-

Malhotra, B. D., & Ali, M. A. (2018). Nanomaterials in biosensors: Fundamentals and applications. Nanomaterials for biosensors, 1..

Schodek, D. L., Ferreira, P., & Ashby, M. F. (2009). Nanomaterials, nanotechnologies and design: an introduction for engineers and architects. Butterworth-Heinemann.

Binns, C. (2021). Introduction to nanoscience and nanotechnology. John Wiley & Sons.

Klabunde, K. J., & Richards, R. M. (Eds.). (2009). Nanoscale materials in chemistry. John Wiley & Sons.

Kontogeorgis, G. M., &Kiil, S. (2016). Introduction to applied colloid and surface chemistry. John Wiley & Sons.

Poole, C. P., & Owens, F. J. (2003). Introduction to Nanotechnology John Wiley & Sons. Inc., Hoboken, New Jersey.

Tsurumi, T., Hirayama, H., Vacha, M., &Taniyama, T. (2009). Nanoscale physics for materials science. CrcPress.

Online Resources

https://epgp.inflibnet.ac.in/view_f.php?category=1852

https://epgp.inflibnet.ac.in/loaddata.php?action=loadpaperlist1&maincat=831

https://nptel.ac.in/courses/118102003/

https://nptel.ac.in/courses/103103033/module9/lecture1.pdf

K1-Remember K2-Understand K3- Apply K4-Analyze K5-Evaluate K6-Create

Course Designed by

Dr. C. Balalakshmi, Assistant Professor/ Dr. K. Gurunathan, professor & Head

Course Outcome Vs Programme Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	S (3)	M (2)	M (2)	L (1)	M (2)	M (2)	L (1)	M (2)	M(2)
CO2	S(3)	S(3)	S(3)	S(3)	M(2)	M(2)	S(3)	M(2)	M(2)	L(1)
CO3	M(2)	M(2)	S(3)	S(3)	M(2)	S(3)	S(3)	L(1)	L(1)	M(2)
CO4	S(3)	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)	S(3)	M(2)	S(3)
CO5	S(3)	S(3)	M(2)	S(3)	M(2)	S(3)	M(2)	M(2)	S(3)	S(3)
W.AV	2.8	2.8	2.6	2.8	1.8	2.6	2.6	1.8	2	2.2

S-Strong(3), M-Medium(2), L-Low(1)

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	L(1)	L(1)	L(1)	M(2)	-
CO2	M(2)	M(2)	S(3)	S(3)	M(2)
CO3	S(3)	S(3)	S(3)	S(3)	M(2)
CO4	S(3)	M(2)	S(3)	S(3)	S(3)
CO5	S(3)	S(3)	S(3)	L(1)	M(2)
W.AV	2.4	2.2	2.6	2.4	1.8

Course Outcome Vs Program Specific Outcomes

S-Strong(3), M-Medium(2), L- Low(1)

				Sem	ester I			
Core	Coi	irse code	Nanos	science and	Technology	Р	Credits: 4	Hours: 8
	5	533107		Lab –	I			
			(Nano	o-Physics E	xperiments)			
				UN	IT-I			
Objecti	ve 1	To under	erstand th	ne resistivity	y behavior of na	anomate	erials	
Measure	ment o	of resistivi	ity of a gi	ven Silicon	nano material b	y Four p	obe method	
Measure	ment o	of resistivit	ity of a gi	ven Alumina	a nanomaterial b	oy Four p	probe metho	d.
Measure	ment o	of Magneto	oresistanc	ce of a given	semiconductin	g nano n	naterial.	
Outcon	ne 1	Obtained	d throug	h knowledg	e on the nanon	naterials		K2
				UN	IT-II			
Objectiv	re 2	To gain l	knowled	ge hall effet	e and tempera	ture coe	fficient	
Study of	Hall I	Effect.						
Study of	the de	ependence	of Hall c	coefficient of	n temperature			
Outcon	ne 2	Attained	l the han	ds on traini	ng hall effect n	neasurer	nent	K3
				I	UNIT-III			
Objectiv	re 3	To under	erstand th	ne character	ristic of PN jun	ction die	ode	
Study	y of P-	-N junctior	n characte	eristics- Ten	nperature coeffic	cient and	Energy bar	id gap
Stud	y of P	P-N junctio	on charact	teristics-Rev	verse saturation of	current a	nd Material	constant
Outcon	ne 3	Experien	nced in le	earning and	doing action	6.		K2
				0%	UNIT-IV			
Objectiv		-	-		<mark>l application in</mark>	solar ce	11	
		y and spin						
		cell I-V C			2011	_		
Outcon	ne 4	Effect of	f t <mark>hin fi</mark> ln	n coating te				K4
		I			UNIT-V	13		
Objectiv				ill in finding				
Characte			Zener		Zener diode	as	voltage	regulator
		-		-J software.				
Outcom				rience on na				K5
K1-Rem	iembe	er K2-Und	derstand	K3- Apply	K4-Analyze	K5-Eva	luate Ko	6-Create
		Cou	Irse desig	ned by Dr.C	.Ramalingam,	Assista	nt Professor	•

Course Outcome Vs Programme Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)	M(2)	L(1)	L(1)	L(1)
CO2	S(3)	-	M(2)	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)	-
CO3	S(3)	M(2)	-	S(3)	M(2)	M(2)	-	M(2)	M(2)	S(3)
CO4	S(3)	L(1)	-	S(3)	M(2)	S(3)	M(2)	-	L(1)	S(3)
CO5	L(1)	-	S(3)	S(3)	S(3)	-	M(2)	S(3)	-	L(1)
W.AV	2.6	1.2	1.6	2.8	2.6	2.2	16	1.8	2.4	1.6

S-

Strong(3), M-Medium(2), L-Low(1)

СО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M(2)	M(2)	L(1)	M(2)	S(3)
CO2	L(1)	S(3)	S(3)	L(1)	L(1)
CO3	M(2)	L(1)	M(2)	L(1)	M(2)
CO4	S(3)	S(3)	S(3)	S(3)	L(1)
CO5	L(1)	M(2)	M(2)	M(2)	-
W.AV	1.8	2.2	2.2	1.8	1.4

Course Outcome Vs Programme Specific Outcomes

S- Strong(3), M-Medium(2), L- Low(1)

	Semester- I									
DSE Course code Thin Film Technologies and Characteristics T Credits: 3										
533										
	Unit I									
Objective 1 To understand the basic definition and the various techniques in thin film										
0	formation									
Thin Film T	echnology: - Role of Thin films and Nanostructures in Technology and Device									
	poration-Hertz- Knudsen equation, evaporation from a source and film thickne									
-	Glow discharge and plasmas-Plasma structure, DC, RF and microwave excitatio									
Sputtering p	processes-Mechanism and sputtering yield, Sputtering of alloys; Reactive									
sputtering.										
Outcome1 Learners familiarize with the principles and equipment of different K1										
deposition techniques										
	Unit-II									
Objective 2 To explain the mechanism of thin film formation with aid of relevant										
mathematical and theoretical explanations										
Nucleation a	and Growth: - Nucleation and Growth: Adsorption, Surface diffusion, models									
	nucleation, coalescence and depletion, grain structure and microstructure and									
	on deposition parameters. Role of energy enhancement in nucleation; Se									
assembly: me	echanisms and controls for nanostructures of 0 and 1 dimension.									
Outcome 2	Understand the phenomena and concepts involved in thin film K2									
	Unit-III									
Objective 3	To inculcate knowledge about the factors that influence the process									
Ū	of nucleation and growth									
Deposition	Technology: - Adsorption, Surface diffusion, Nucleation, Surface ener									
Texturing, S	Structure Development, Interfaces, Stress, Adhesion, Temperature Contr									
agglomeratio	n, aggregation, Semiconductor devices, Growth Monitoring, Composit									
	ice Mismatch Surface Morphology.									
Outcome 3	Capable to elucidate the factors that are involved in thin film K2									
	technology									
	Unit -IV									
Objective 4	A basic coverage of the important topics under 'epitaxial growth'									
Epitaxial Te	chnology: -Epitaxy: Structural aspects of epitaxy, homo- and hetero-epitaxy,									
lattice misfit	and imperfections; epitaxy of compound semiconductor, theories of epitaxy,									
Role of inter	rfacial layer, Artificial semiconductors, Band-gap engineering, Superlattice									
structures; St	rained layer epitaxy,									
Outcome 4	Understand the fabrication methods for engineering of thin K2									
	film									
	Unit- V									
Objective 5	To guide the students in understanding the various properties and									
Objective 5	To guide the students in understanding the various properties and characteristics of thin films									
•										
Characterist	characteristics of thin films									
Characterist	characteristics of thin films tics of Thin Films: - Mechanical, Electrical, Magnetic and Optical Properties									

Suggested Readings:-

Bunshah, R. F. (2001). *Handbook of hard coatings: Deposition technologies properties and applications*. Estados Unidos: Noyes Publications.

Callister, W. D., & Rethwisch, D. G. (2018). *Materials science and engineering: An introduction*. Hoboken, NJ: Wiley.

Chopra, K. L. (1985). *Thin film phenomena*. Malabar, FL: R.E. Krieger.

Frey, H. (2015). *Handbook of Thin-Film technology*. Berlin: Springer.

Ohring, M. (2006). The materials science of thin films. San Diego, Calif: Academic Press.

- Pandalai, S. G. (2003). *Recent research developments in vacuum science & technology*. Trivandrum:Transworld research network.
- Seshan, K. (2012). *Handbook of thin film deposition: Techniques, processes, and technologies*. Amsterdam: Elsevier.

Online Resources

https://epgp.inflibnet.ac.in/ahl.php?csr

no=831

https://nanohub.org/tags/thinfilms

https://nanohub.org/resources/26056

https://nanohub.org/resources/11949

K1-Remember K2-Understand K3-Apply K4-Analyze K5-Evaluate K6-Create

Course Designed by

Dr. K. Gurunathan, Professor & Head

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S (3)	L(1)	L(1)	-	M(2)	L(1)				
CO2	M(2)	S (3)	M(2)	L(1)	M(2)	M(2)	S (3)	L(1)	S (3)	S (3)
CO3	S (3)	S (3)	S (3)	M(2)	S (3)	M(2)	S (3)	M(2)	M(2)	L(1)
CO4	M(2)	S (3)	S (3)	M(2)	M(2)	L(1)	M(2)	L(1)	L(1)	L(1)
CO5	S (3)	M(2)	S (3)	S (3)	S (3)	S (3)				
W.Av	2.6	3	2.8	2.2	2.6	1.6	2.4	1.4	2.2	1.8

Course Outcome Vs Programme Outcomes

S-Strong (3), M-Medium (2), L- Low (1)

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M(2)	S(3)	L(1)	S(3)	M(2)
CO2	L(1)	M(2)	L(1)	S(3)	L(1)
CO3	M(2)	S(3)	M(2)	S(3)	S(3)
CO4	M(2)	M(2)	L(1)	S(3)	S(3)
CO5	S(3)	S(3)	S(3)	S(3)	S(3)
W.AV	2	2.6	1.6	3	2.4

Course Outcome Vs Program Specific Outcomes

S-Strong (3), M-Medium (2), L- `Low (1)

			Semester- I							
DSE	Соц	rse code	Condensed Matter Physics	Т	Credits: 3	Hours: 3				
202		33502		-		11001510				
Unit -I										
Objectiv	Objective 1 To introduce the basics of atoms , crystals and lattices and related									
- ~ J		concepts								
Crystalline Matter: - Atoms in crystals – types of lattices-Cubic- Close packed structure -										
-	Atomic planes –reciprocal lattice- Brillouin zones-structure factor- Binding in crystals –types									
Outcom		_	acquire with basic and important c			K2				
		state phy	sics	-						
		I	Unit-II							
Objectiv	re 2	To make	them understand some key theories a	and co	oncepts in cr	ystals				
Properti	es: -		ration in crystals - Optical properties i							
propertie	s of m	etals – Fre	e electron theory – Fermi energy – Brillo	ouin zo	ones – Semic	onductor –				
Band the	eory- l	Kronig Per	my Model - Effective mass - Impurity	level	s – Hall effe	ct – Fermi				
energy of	f pure	1	l semi conductor							
Outcom	e 2	Student	discuss the properties of materials from	m phy	ysics point	K1				
		of view	5							
			Unit III							
Objectiv	re 3	To intro	luce the <mark>m</mark> to <mark>basic conc</mark> ept <mark>s</mark> in dielectri	cs an	d ferroelectr	ics				
			lectrics: - Depolarisation field E1, L							
			ility – Clausius – Mosotti relation		-	-				
			assification of ferroelectric crystals, so	oft op	otical phonon	, Landau				
	-		, second order transition.			1				
Outcom	e 3		analysis the clear in concepts of	diel	ectrics and	K4				
		ferroelec								
		Г <u> </u>	Unit IV							
Objectiv	re 4	To get material	them acquainted with magnetism	prop	erties of m	agnetic				
Magnoti	cm.		theory of paramagnetism – Ferromagnetism	motio	m Ferroma	metic				
U		-	-ferro magnetic materials - spin waves –		-	-				
materials			-ieno magnetie materiais - spin waves –	manu	and Soft mag					
Outcom		Learnes	remember the basic concepts of magnet	tism		K1				
Jacom	с т -		Unit V							
Objectiv	re 5	To study	the concept, theories and types under	super	conductivity	,				
÷		•	eissner effect – Type I & II super cond	-	•					
_		-	es - BCS theory - Super conducting tunn			-				
	-		mperature super conductivity.	-0		. I				
Outcom		-	nity for learners to equip them with a	pplie	d concepts	K3				
			conductivity		-					
		-	•							

Suggested Readings:-								
Azároff Leonid V. (1986). Introduction to solids. Bombay: Tata McGraw-Hill.								
Kittel, C., & McEuen, P. (2018). Introduction to solid state physics. Hoboken,								
NJ: Wiley.Phillips, P. (2015). Advanced solid state physics. Westview Press								
Pillai, S. O. (2018). Solid state physics. London, UK: New Academic Science, an								
imprint of NewAge International (UK) Ltd.								
Robertson, C. (1980). The solid state. London: Polytechnic of North London. S., N. G. B.,								
& S., N. G. B. (n.d.). Material science and Processes. Khanna Pub.Publ.								
K1-Remember K2-Understand K3-Apply K4-Applyze K5-Evaluate K6-Create								

A1-Kemember	K2-Understand	КЗ-Арріу	K4-Analyze	K5-Evaluate	Ko-Create
	Co	ourse designed	l by: Prof.K G u	ırunathan/Dr. (G. Ramalingam

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	M(2)	L(1)	L (1)	L	M(2)	M(2)	M(2)	S (3)	L (1)
			144	OL LY	(1)	NO di				
CO2	L (1)	-	S (3)	S (3)	М	S (3)	L (1)	M(2)	M(2)	-
			291	AGAP	2)	ERSITY	1 E.			
CO3	S (3)	M(2)	L(1)	M(2)	L	L(1)	S (3)	L(1)	L (1)	S (3)
				VA	(1)					
CO4	L (1)	M(2)	M(2)	L (1)	L	M(2)	S (3)	M(2)	S (3)	M (2)
				15	(1)					
CO5	M(2)	M(2)	-	S (3)	25	S (3)	M(2)	S (3)	S (3)	L (1)
W.AV	1.8	1.6	1.4	2	1	2.2	2.2	2	2.4	1.4

Course Outcome Vs Program Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M(2)	L(1)	L(1)	-	M(2)
CO2	M (2)	-	L (1)	M (2)	S(3)
CO3	L(1)	L(1)	L (1)	M (2)	M (2)
CO4	L (1)	L (1)	-	M (2)	-
CO5	L (1)	L (1)	M (2)	M (2)	L (1)
W.AV	1.4	0.8	1	1.6	1.6

S-Strong(3), M-Medium(2), L- Low

Core			Semester – I	l					
~~~~	Course code	e Synthe	esis of Nanomat	erials	Т	Credits: 5	Hours: 5		
	533201								
			Unit I						
Objective	P ]	vide basic erial synthe	knowledge o sis	n various	ph	ysical appro	oaches fo		
Physical	methods: -	Inert gas c	ondensation, A	c discharg	e, R	F- plasma, 1	Plasma arc		
technique	, Ion sputterin	ng - RF/DC	magnetron spu	ttering, Las	er al	olation, Laser	r pyrolysis		
microway	e plasma e	vaporation	, Thermal eva	poration E	Electr	on beam e	vaporation		
Transferre	ed Arc Plasma	a Reactor.							
Outcome	Acquire	knowledge	on various phy	sical meth	ods f	for synthesis	, K3		
Outcome	based on	the propert	ties and behavio	rs of the na	anon	naterials			
	<b>I</b>		Unit II						
Objective	e 2 To intro nanomate		ents to bottor	n up app	roac	hes for the	e synthes		
Chemica	I Methods: -	Solvothern	nal synthesis- P	notochemic	al sy	nthesis-Elect	rochemica		
synthesis,	Sol-gel tech	hnique – c	ontrol of grain	size – co	o-pre	cipitation hy	drolysis -		
sonochem	nical method	combustion	technique – coll	oidal precij	oitati	on – template	e process -		
Micellar 1	oute-growth o	of nanorods -	– <mark>solid-state</mark> sint	ering – grai	n gro	wth.			
Outcome	2 Acquire synthesis		n on chemic	al route	of	nanomateria	I K3		
			Unit III		10				
Objective	P 1	rt knowledg thermal apj	e on synthesis o proach	of nanomat	erial	of various of	limensions		
•			ple, 3D nanostr				-		
nanotubes	and nanorod	s – Nanoflov	wers- nanocrysta	ls, Nano-ri	ngs –	chemical rou	utes for 1D		
nanotubes	s and nanorods	s – Schlenk	synthesis of Qua	ntum dots.					
				e nanoma	teria	l of vario	T7 4		
	3 Students	will be a	ble to fabricat	Outcome 3Students will be able to fabricate nanomaterial of variousKdimension and morphology based on applications					
	3				ons		us K4		
	3				ons		us K4		
	dimension	n and morp ide insight	hology based o	n applicatio					
Outcome Objective	dimension e 4 approach	n and morp ide insight 1	hology based or Unit IV	n applicatio	anom	aterials by	top dow		
Outcome Objective Mechanie	dimension e 4 To provi approach cal methods:	n and morp ide insight M Grinding –	hology based of Unit IV on the synth	n applications esis of na	anon /pes	naterials by of balls, WC	top dow and ZrO2		
Outcome Objective Mechanie material-l	dimension dimension To provi approach cal methods:	n and morp ide insight Grinding – dium for gri	hology based of Unit IV on the synth	<b>a application</b> esis of national milling, types in getting	anom /pes g req	naterials by of balls, WC uired grain s	top dow and ZrO2 ize for low		
Outcome Objective Mechanie material-l	dimension dimension To provi approach cal methods: point materials	n and morp ide insight Grinding – dium for gri	hology based of Unit IV on the synth high energy bal nding, limitation	<b>a application</b> esis of national milling, types in getting	anom /pes g req	naterials by of balls, WC uired grain s	top dow and ZrO2 ize for low		
Outcome Objective Mechanie material-l melting p	dimension dimension To provi approach cal methods: call ratio, mec point materials	n and morp ide insight Grinding – dium for gri s, typical sy	hology based of Unit IV on the synth high energy bal nding, limitation	<b>a application</b> esis of na l milling, ty as in getting lastic defor	ypes g req matio	naterials by of balls, WC uired grain s on, melt que	top dow and ZrO2 ize for low nching and		
Outcome Objective Mechanie material-l melting p	dimension dimension To provi approach cal methods: cal ratio, med point materials	n and morp ide insight Grinding – dium for gri s, typical sy nowledge in	hology based of Unit IV on the synth high energy bal nding, limitation estems, severe p	esis of na milling, ty is in getting lastic defor e synthesis	ypes g req matio	naterials by of balls, WC uired grain s on, melt que thodology b	top dow and ZrO2 ize for low nching and y K3		
Outcome Objective Mechanie material-l melting p annealing	dimension dimension To provi approach cal methods: cal ratio, med point materials	n and morp ide insight Grinding – dium for gri s, typical sy nowledge in cal approad	hology based of Unit IV on the synth high energy bal nding, limitation ystems, severe p	esis of na milling, ty is in getting lastic defor e synthesis	ypes g req matio	naterials by of balls, WC uired grain s on, melt que thodology b	top dow and ZrO2 ize for low nching and y K3		
Outcome Objective Mechanie material-l melting p annealing	dimension dimension approach cal methods: call ratio, mec coint materials dimension approach cal methods: call ratio, mec coint materials dimension approach cal methods: call ratio, mec coint materials	n and morp ide insight Grinding – dium for gri s, typical sy nowledge in cal approad	hology based of Unit IV on the synth high energy bal nding, limitation ystems, severe p	esis of na milling, ty is in getting lastic defor e synthesis	ypes g req matio	naterials by of balls, WC uired grain s on, melt que thodology b	top dow and ZrO2 ize for low nching and y K3		
Outcome Objective Mechanie material-l melting p annealing Outcome	dimension dimension To provi approach cal methods: cal ratio, med coint materials dimension cal methods: cal ratio, med coint materials dimension cal methods: cal methods: cal ratio, med coint materials	n and morp ide insight Grinding – dium for gri s, typical sy nowledge in cal approad ures	hology based of Unit IV on the synth high energy bal nding, limitation rstems, severe p o optimizing th ch to fabricat	a application esis of na milling, ty as in getting lastic defor e synthesis e novel	anom /pes g req mations me device	naterials by of balls, WC uired grain s on, melt que thodology b ces in nan	top dow and ZrO2 ize for low nching and y K3 o		
Outcome Objective Mechanie material-l melting p annealing Outcome	dimension dimension approach cal methods: cal ratio, mecho coint materials Attain kn mechanic architectur e 5 To make	n and morp ide insight Grinding – dium for gri s, typical sy nowledge in cal approad ures the student	hology based of Unit IV on the synth high energy bal nding, limitation ystems, severe p n optimizing th ch to fabricat	a application esis of na l milling, ty is in getting lastic defor e synthesis e novel	ypes g req mations <b>me</b> device Nano	naterials by of balls, WC uired grain s on, melt que thodology b ces in nan	top dow and ZrO2 ize for low nching and y K3 o		
Outcome Objective Mechanie material-l melting p annealing Outcome Objective Biologica	aimension         aimension         approach         approach         cal methods:         cal Methods:	n and morp ide insight Grinding – dium for gri s, typical sy nowledge in cal approad ures the student - Biologica	hology based of Unit IV on the synth high energy bal nding, limitation rstems, severe p n optimizing th ch to fabricat Unit V s understand co	a application esis of na l milling, ty is in getting lastic defor e synthesis e novel oncepts of I nanopartic	ypes g req mations <b>me</b> device Nano les -	naterials by of balls, WC uired grain s on, melt que thodology b ces in nan -Biomimetic Phyt	top dow and ZrO2 ize for low nching and y K3 o s osynthesis,		

()utcome 5	ts will use cor l nanomaterial	-		to create nove cations	el bio	K6
Suggested Readings	-					
Abdullaeva, Z. (n.	1.). Synthesis	of Nan	oparticles and	Nanomaterials	: Biol	ogical
Approaches. Sp	oringerNature.					
Basiuk, V. (2015)	). Green Pro	ocesses	for Nanotechi	nology: From	inorg	anic to
bioinspriednan	omaterials. Spri	inger.				
Grumezescu, A. (20	15). Fabrication	n and se	elf assembly of	nanobiomateria	uls:	
Application of N	Vanobiomateria	ls(Vol. 1	). William Andr	ew, Elseiver.		
Grumezescu, A. (2	2016). Nanoma	aterials	in Antimicrob	vial therapy:	Applica	ition o
Nanobiomateri	<i>als</i> . William An	drew, El	seiver.			
Horikoshi,S.(2013).	Microwaves i	n Nano	particle Synthe	esis: Fundame	ntals d	ınd
Application. W	iley-VCH.					
Kulkarni, S. (2014	). Nanotechnolo	ogy: Pi	rinciples and	Practices(Third	edition	n ed.).
SpringerInterna	ational Publishir	ng.				
Rao, (n.d.). The Che	mistry of Nano	material	s(Second Edition	on ed.). John W	'iley an	d
01		troductio	on to Nano: Ba	sics to nanoscie	ence an	ld
nanotechnolog	1 0		CDEITY Co			
Singh, (2015). Bio		Biosyn	thesis and Su	stainable Biote	chnolog	gical
implication. W	-					
Venetti, A. (2007). P	rogress in Mate	rials Sci	ence Research.	Nova Science		
<b>Online Resource</b>						
https://epgp.inflib			egory=1852			
https://nptel.ac.in/						
https://nptel.ac.in/	10.00					
https://nptel.ac.in/		003/ htt	p <mark>s:/</mark> /www.slides	hare.net/Ramali	ngamG	opal/sol
gel-synthesis-of-n	-			1	[	
K1-Remember K2-Ui			-			Create
Course Designed by:	r. N. Suganthy	y, Assist	ant Professor /	Dr. K Guruna	than,	
Professor & Head						
Course	Outcome Vs P	Program	me Outcomes			

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10
CO1	S (3)	M(2)	S (3)	L(1)	S (3)	S (3)				
CO2	S (3)	M(2)	S (3)	S (3)						
CO3	M(2)	S (3)	S (3)	M(2)	M(2)	S (3)	M(2)	M(2)	S (3)	M (2)
<b>CO4</b>	S (3)	M(2)	S (3)	M (2)						
CO5	S (3)	M(2)	M(2)	S (3)	S (3)					
W.AV	2.8	3	3	2.8	2.8	2.8	2.6	1.8	3	2.6

S-Strong(3), M-Medium(2), L- Low(1)

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	S (3)	M (2)	M (2)	S (3)
CO2	M (2)	S (3)	S (3)	M (2)	S (3)
CO3	S (3)	S (3)	M (2)	S (3)	S (3)
CO4	S (3)	S (3)	M (2)	S (3)	S (3)
CO5	M(2)	S (3)	S (3)	S (3)	S (3)
W.AV	2.6	3	2.4	2.6	3

**Course Outcome Vs Program Specific Outcomes** 

S-Strong(3), M-Medium(2), L- Low(1)



		Semester – II	]					
Core	Course code		Hours:4					
	533202							
		Unit - I						
Objective 1 To explore various mechanical properties and characterization techniques for nanoscale materials.								
Mechani	cal Character	rization: -Hardness and elastic modulus of NPs-Micro	hardness –					
		gue - failure stress and strain toughness - abrasion						
		oughness - elasticity of nanomaterials - superplasticit						
		- nanomembranes - inter connected pores - plastic defe	ormation of					
nanomate	rials- Adhesio	n and friction of NPs	_					
Outcome		knowledge on the importance of the material al properties and to determining	K2					
		Unit - II						
Objective	e 2 To gain	deep knowledge on the electrical character	zation of					
U	nanomate							
Electrica	l Characteriz	ation: -DC electrical conductivity as a function of temp	perature					
- Hall e	ffect – types	of charge carriers - charge carrier density - im	bedance					
spectrosc	opy – dc elect	rical resistivity – activation energy – bulk and grain be	oundary					
		n times of dipoles.						
Outcome	2 Influence	of various affecting factors in conductivity and	K3					
	their anal		IX.J					
	•	Unit - III						
Objectiv	e 3 To obtain	n detailed methods of morphological and structural	studies					
	of nanom	aterials						
-	-	roscopic characterization						
-		-Optical absorption spectroscopy (OAS) - UV-Vis sp						
		L) - Fourier Transform Infrared Spectroscopy (FTIR						
-		diffraction (XRD) - Electron Spectroscopy: X-ray Pl						
-	<b>-</b> • · · ·	Electron microscopy: - Scanning Electron Microsco						
		Microscopy (TEM)/ High Resolution (HR)TEM with Se	elected Area					
	,	AED) Atomic Force						
Microsco	py (AFM).	what a willing advanced optical and electron	-					
Outcome	S Deep Kno	owledge on utilizing advanced optical and electron opy techniques	ⁿ K1					
	spectrosco	Unit - IV						
Objectiv	A 1 To lean	and gain magnetic studies and properties.						
		ation: - Concepts of dia-para-ferro and ferri magnetism	evchange					
0		interaction – Hysteresis loop – coercivity – change of c	U					
	0	gnets – hard magnets – spring exchange magnets-	•					
0	•	SM – function of temperature - ferromagnetic resonance	U					
	-	MR – Introduction – Experimental Techniques – Cher	-					
		in - spin interaction – Applications – ESR –Prin						
	ons of ESR Sp		<b>pp</b>					
Outcome		advanced principles in magnetism and latest						
		measurement techniques learning	K4					

		Un	it - V					
<b>Objective 5</b>	To understand			electroch	emical	studies	for	the
	characterization	of nanomate	rials					
	nical Characteriz							
Fundament	al Principle: Elec	ctrochemical c	ell - ion/	ion intera	action an	d Stokes	- Einst	ein
equation - el	lectrode/electrolyte	e interface - ki	netics of	f electrod	e reaction	ns -Butle	er-Volt	ner
equation - 1	Electroanalytical	techniques: ir	rversible	e - quasi	-reversib	ole volta	mmetr	у-
linear scan	and cyclic volt	ammetry - E	lectroch	emical in	mpedanc	e specti	oscopy	y -
Galvanostati	ic charge- discharg	ge - chronopote	entiomet	ry chrono	amperon	netry.		
Outcome 5	Sound underst various techniqu	-	electroc	hemical	princip	oles an	d K6	
Suggested R	-	ues						
00	E., & Macdona	ald I D (	0005)	Impodano	a speat	rosconv	theor	
	andapplications. H		,			oscopy	ineory	',
	Wereley, S. (200					d an aby	ia No	
York:Spring	-	o). Diomolecu	iur sensi	ing, proce	essing un	ia anaiys	<i>is</i> . nev	N
1 0	S. M., Oluwafe	mi O S	Kalarik	val N	k The	mac C	(201	8)
	ation of nanomater							
	an imprint of Elsev		ε απά κε		gies. Di	ixioiu. v	voound	Jau
-	Bhatia, S. (2006).		nicro/na	notechnol	ony Ber	lin: Sprin	laer	
	2012). Micromach	-				-	-	rlin
	Iosford, W. F.		•			-	-	
	ganga.inflibnet.ac.							035.
	inflibnet.ac.in/viev					///204.p	, ai	
	, Arimoto, Y., Ish		-		)4) Forr	oplectric	Rand	om
	<i>pries</i> . Berlin, Heid		-			001001110	nunu	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	(2011). <i>Atomic</i>				-	eld ont	ical	
	andnanoscratchin	•				-		
Springer.	<i>indutio</i> ser dientiti	s. application	io rough	i ana nan	irai surje	ices. Dei		
	nes as tools for r	nanotechnolog	v (2013	) Place	of public	eation no	ot iden	tified:
	rthasarathy, B. K	0.			-			
New Delhi: 1		. (2007). end	nenges	unu oppe		in num	sieenne	<i>n</i> 08 <i>y</i> .
	V. K., &Zavalij,	PY (2009)	Fundan	ientals of	f nowder	· diffract	tion an	ıd
•	aracterization of n			•	-	aggrae		<i>ci</i>
	T. (2009). Nano			1 0		New Y	ork.	
SpringerScie	· ,		enances	and mee	nannsmis.	1,00,00	ork.	
1 0	Thomas, R., Za	chariah. A. K	& Mi	ishra. R.	K. (201	7). Spec	ctrosco	pic
	nanomaterials cha					· •	-	
v	J., & Tsai, D. P.							n of
-	ocal plasmons. Be	· · •			0.000 11			- ~j
•	. (2009). <i>Optical</i>			oscopv o	f nanom	aterials.	New	Jersev
World Scien	· · ·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	r	r, v	,		- ••	
Vasile-Dan	Hodoroaba., V	Volfgang E.S	S. Ung	er., Ale	xander	G Sha	ard. (	(2019)
Characterize		6		., 110		- 21		)
	icles: Measuremer	nt Processes fo	r Nanon	articles. I	Netherlar	nds, Else	vier Sc	ience.
<i>i i</i>	er K2-Understand		^		K5-Eval		K6-Cree	
		Course Design		•				

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	L(1)	M(2)	S(3)	M(2)	M(2)	M(2)	M(2)	L(1)	M(2)	M(2)
CO2	M(2)	S(3)	S(3)	M(2)						
CO3	S(3)	M(2)								
CO4	S(3)	M(2)	S(3)	S(3)	M(2)	S(3)	S(3)	L(1)	M(2)	S(3)
CO5	L(1)	S(3)	S(3)	M(2)	M(2)	M(2)	M(2)	L(1)	M(2)	L(1)
W.AV	2	2.4	2.8	2.2	2	2.2	2.4	1.4	2	2

**Course Outcome Vs Programme Outcomes** 

S-Strong(3), M-Medium(2), L- Low(1)

Course Outcome Vs Programme Specific Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M(2)	S(3)	S(3)	M(2)	S(3)
CO2	S(3)	M(2)	S(3)	M(2)	S(3)
CO3	S(3)	M(2)	S(3)	M(2)	S(3)
<b>CO4</b>	M(2)	<b>S</b> (3)	M(2)	<b>S</b> (3)	M(2)
CO5	M(2)	M(2)	S(3)	<b>S</b> (3)	<u>M(2)</u>
W.AV	2.4	2.4	2.8	2.4	2.6

S-Strong(3), M-Medium(2), L- Low(1)

		Semester-II					
Core	Course Code 533203	Applications of Nanomaterials	Т	Credits : 5	Hours: 5		
		Unit -I					
<b>Objective</b> 1		e applications of nanomaterials in electr					
Ŭ	-	of electronic devices, enhance the density of p					
		icroelectronics–Photolithography - Molecular					
		stors-photonics -carbon nanotubes (CNT) in e	lectro	nic applicatio	ns - CNT		
based MOSF		NEMSCMOS technology					
Outcome 1	Gained know devices	vledge on the general physics and applica	tions	in electron	K3		
	1	Unit - II					
Objective 2	magnetic dev		-				
e		Soft magnets for high speed memories - h		0	gh density		
memories-Hi		ity Batteries-High-Power Magnets –biological a					
Outcome 2	U	e processing techniques for designing mag	netic	devices usin	g		
	Nano materials   K3						
		Unit - III					
Objective 3		e Nanocomposites are materials that incor of standard ceramics material and its applic	-		particles		
purification	of water – blood lacements–ceran	nics and Nanocomposites: - Near net shaped of and air, catalysis – tooth and bone substitutes and bone substitutes and one substitutes and air, catalysis – tooth and bone substitutes and bone substi	-hydr	oxyappetites-	inductive		
<b>Outcome</b> 3	Learners exp	ertise to fabricate nanocomposites for waste	e wate	er purificatio	n		
Outcome 5	and nanocera	amics for tooth and bone substitutes			K6		
	·	Unit - IV					
<b>Objective</b> 4	—	e nanotechnological products, and enviro inorganic pollutants	nmen	tal detoxific	ation of		
Environmen	tal applications	s: – Organic dye degradation – textile and lea	ather	industries – r	emoval of		
bacteria and	microbes – wate	r resistant composites for walls resistance to fu	ingal a	attack-sensor	s for gases		
– pressure– t	emperature-light	eningarrestors-Detoxificationoforganic/inorgar	nicpol	lutants.			
Outcome 4	Analyzing the pollutants	ne environmental detoxification of organ	ic an	d inorganic	K4		
	· ·	Unit - V					
Objective 5	Apply key nanomateria	concepts is to highlight the biological and als	biom	edical applic	ations of		
Longer-Lasti muscle phys	ngMedical Impl iology - Trends	functionalization of CNT and biological a ants. glucose detection, artificial nanostructure in nanobiotechnology- New generations of pro s- artificial scaffolds or biosynthetic coatings	s: – s	sensory physics and medical	ology and implants-		
-	_	nerve cells, and replacements of damaged skin,					

# Outcome 5 Mastering the design and nanodevice for biological and biomedical k6 applications of nanomaterials

#### Suggested Readings:-

AndrzejWieckowski&et.al,(2003)CatalysisandElectrocatalysisat Nanoparticle.

Kumar, C. S. (Ed.). (2006). *Nanomaterials: toxicity, health and environmental issues* (Vol. 5). St. Martin's Press.

Nalwa, H. S. (2007). *Handbook Of Nanostructured Biomaterials And Their Applications In Nanobiotechnology. Volume 1: Biomaterials*. American Scientific Publishers.

Mirsky, V. M. (Ed.). (2013). Ultrathin electrochemical chemo-and biosensors: technology and performance (Vol. 2). Springer Science & Business Media.

Greco, R. S., Prinz, F. B., & Smith, R. L. (Eds.). (2004). *Nanoscale technology in biological systems*. CRC Press

Theodore, L., & Kunz, R. G. (2005). *Nanotechnology: environmental implications and solutions*. John Wiley & Sons.

#### **Online Resource**

https://swayam.gov.in/nd1_noc19_mm21/preview

K1-Remember	K2-Understand	K3- Apply	K4-Analyze	K5-Evaluate	K6-Create
	3	S ALAGAPPA U	INIVERSITY S	Course de	signed by
	Q	00	Dr. C	. Balalakshmi As	ssistant Professor

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
		23	A		20	118				
CO1	M(2)	S(3)	L(1)	M(2)	L(1)	M(2)	L(1)	M(2)	S(3)	L(1)
				1			Y			
CO2	S(3)	M(2)	M(2)	1.5	S(3)	M(2)	M(2)	L(1)	M(2)	L(1)
CO3	S(3)	L(1)	S(3)	M(2)	L(1)	L(1)	M(2)	L(1)	M(2)	M(2)
CO4	L(1)	L(1)	M(2)	S(3)	L(1)	L(1)	M(2)	L(1)	S(3)	M(2)
CO5	S(3)	M(2)	M(2)	L(1)	L(1)	M(2)	L(1)	M(2)	S(3)	M(2)
W.AV	2.4	1.8	2	1.6	1.4	1.6	1.6	1.4	2.6	1.6

#### Course Outcome Vs Programme Outcomes

S-Strong(3), M-Medium(2), L-Low(1)

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M(2)	L(1)	M(2)	S(3)	L(1)
CO2	L(1)	M(2)	-	M(2)	M(2)
CO3	L(1)	M(2)	L(1)	L(1)	-
CO4	-	L(1)	M(2)	S(3)	M(2)
CO5	M(2)	L(1)	S(3)	M(2)	M(2)
W.A	1.2	1.4	1.6	2.2	1.4
V					

Course Outcome Vs Programme Specific Outcomes

S-Strong(3), M-Medium(2), L- Low(1)



			Semester II			
Core	Cou	rse code	Nanoscience and Technology Lab – II	Р	Credits: 5	Hours: 10
	5.	33207	(Nano-chemistry Experiments)			
			UNIT-I			
Objecti	ive 1	To un	lerstand the nanoparticle synthesis			
1. S	Synthe	sis of Iror	oxide nanoparticles by Co-precipitation m	etho	d.	
			nanoparticles by chemical method.			
	•		2 nanoparticles by Chemical sol-gel method			
	-		2 nanoparticles by Chemical sol-gel metho			
Outcon	ne 1		d through knowledge on the formatio	n pri	nciples of	iron K2
		oxide ai	d zno nanoparticles			
		<u> </u>	UNIT-II			
Objectiv	ve 2	To gain	knowledge on the Au, Ag and polymer p	oroce	ss with exa	mples
	-		oidal nanocmaterials of Au and Ag nanopa	rticle	S	
	-	-	lymer nanocomposites			
Outcon	ne 2	Attaine sol-gel r	l the hands on training of synthesis of n nethod	anop	articles the	ough K3
		Sor ger	UNIT-III			
Objectiv	ve 3	To und	erstand the nanoparticle formation by sp	octro	annia taab	niquos
			i stand the nanopal ticle for mation by sp	cuit	iscopic tech	inques
1. S	Studies		and nanoparticles through UV-Vis spectro		-	-
			and nanoparticles through UV-Vis spectro		-	-
	gap of	on bulk material	and nanoparticles through UV-Vis spectro		-	-
	gap of Raman	on bulk materials spectrosc <b>Prepara</b>	and nanoparticles through UV-Vis spectro opy studies on nanomaterials tion of Au, Ag and polymer nanoc	scopy	and calcula	ate the band
2. R	gap of Raman	on bulk materials spectrosc <b>Prepara</b>	and nanoparticles through UV-Vis spectro opy studies on nanomaterials tion of Au, Ag and polymer nanoc tion are inculcated	scopy	and calcula	ate the band
2. R Outcom	gap of Raman ne 3	on bulk materials spectrosc <b>Prepara</b> stabiliza	and nanoparticles through UV-Vis spectro opy studies on nanomaterials tion of Au, Ag and polymer nanoc tion are inculcated UNIT-IV		osites and	the K2
2. R Outcon Objectiv	gap of Raman ne 3 ve 4	on bulk materials spectrosc Prepara stabiliza	and nanoparticles through UV-Vis spectro opy studies on nanomaterials tion of Au, Ag and polymer nanoc tion are inculcated		osites and	the K2
2. R Outcom Objectiv 1. D	gap of Raman ne 3 ve 4 Demo 7	on bulk materials spectrosc <b>Prepara</b> stabiliza To get t	and nanoparticles through UV-Vis spectro opy studies on nanomaterials tion of Au, Ag and polymer nanoc ation are inculcated UNIT-IV opography and concluding properties of	ompo nanc	osites and	the K2
2. R Outcom Dbjectiv 1. D	gap of Raman ne 3 ve 4 Demo 7	on bulk materials spectrosc <b>Prepara</b> stabiliza To get t Thin film	and nanoparticles through UV-Vis spectro opy studies on nanomaterials tion of Au, Ag and polymer nanoc tion are inculcated UNIT-IV pography and concluding properties of characterization through AFM.	ompo nance / Fou	y and calcula osites and ocomposites r probe met	the K2
2. R Outcom Dbjectiv 1. E 2. C	gap of Raman ne 3 ve 4 Demo 7	on bulk materials spectrosc <b>Prepara</b> stabiliza To get t Thin film	and nanoparticles through UV-Vis spectro opy studies on nanomaterials tion of Au, Ag and polymer nanoc ation are inculcated UNIT-IV pography and concluding properties of characterization through AFM. dies of polymer-nanocomposite material by	ompo nance / Fou	y and calcula osites and ocomposites r probe met	the K2
2. R Outcom Dbjectiv 1. E 2. C	gap of Raman ne 3 ve 4 Demo 7	on bulk materials spectrosc <b>Prepara</b> stabiliza To get t Thin film ctivity stu Effect o	and nanoparticles through UV-Vis spectro opy studies on nanomaterials tion of Au, Ag and polymer nanoc ation are inculcated UNIT-IV pography and concluding properties of characterization through AFM. dies of polymer-nanocomposite material by	ompo nance / Fou	y and calcula osites and ocomposites r probe met	the K2
2. R Outcom Dbjectiv 1. E 2. C Outcom	gap of Raman ne 3 ve 4 Demo 7 Conduc ne 4	on bulk materials spectrosc <b>Prepara</b> stabiliza <b>To get t</b> Thin film ctivity stu <b>Effect o</b> taugh <b>To verif</b>	and nanoparticles through UV-Vis spectro opy studies on nanomaterials tion of Au, Ag and polymer nanoc ation are inculcated UNIT-IV opography and concluding properties of characterization through AFM. dies of polymer-nanocomposite material by f nanostructures on the spectroscopic in UNIT-V y the structural and morphological char	ompo nance / Fou terace	and calcula osites and ocomposites r probe met tions have b	the K2 the K2
2. R Outcon Dbjectiv 1. D 2. C Outcon Dbjectiv 1. X	gap of Raman ne 3 ve 4 Demo 7 Conduc ne 4 ve 5 KRD d	on bulk materials spectrosc <b>Prepara</b> stabiliza <b>To get t</b> Thin film ctivity stu <b>Effect o</b> taugh <b>To verif</b> emo stud	and nanoparticles through UV-Vis spectro opy studies on nanomaterials tion of Au, Ag and polymer nanoc tion are inculcated UNIT-IV pography and concluding properties of characterization through AFM. dies of polymer-nanocomposite material by f nanostructures on the spectroscopic in UNIT-V y the structural and morphological char es for calculating the size of the nanopart	ompo nance / Fou terace	and calcula osites and ocomposites r probe met tions have b	the K2 the K2
2. R Outcom Dbjectiv 1. E 2. C Outcom Dbjectiv 1. X S	gap of Raman ne 3 ve 4 Demo 7 Conduc ne 4 ve 5 KRD d	on bulk materials spectrosc <b>Prepara</b> stabiliza <b>To get t</b> Thin film ctivity stu <b>Effect o</b> taugh <b>To verif</b> emo stud er's formu	and nanoparticles through UV-Vis spectro opy studies on nanomaterials tion of Au, Ag and polymer nanoc ation are inculcated UNIT-IV pography and concluding properties of characterization through AFM. dies of polymer-nanocomposite material by f nanostructures on the spectroscopic in UNIT-V y the structural and morphological char es for calculating the size of the nanopart la and mass approximation method	ompo nanc y Fou terac acter acter	and calcula osites and ocomposites r probe met tions have l rizes of nan- and nanoco	the K2 the K2 s hod been K4 ostructures mposites by
2. R Outcom Dbjectiv 1. E 2. C Outcom Dbjectiv 1. X S 2. S	gap of Raman ne 3 ve 4 Demo 7 Conduc ne 4 ve 5 KRD d Scherre SEM d	on bulk materials spectrosc <b>Prepara</b> stabiliza <b>To get t</b> Thin film ctivity stu <b>Effect o</b> taugh <b>To verif</b> emo stud er's formu	and nanoparticles through UV-Vis spectro opy studies on nanomaterials tion of Au, Ag and polymer nanoc ation are inculcated UNIT-IV opography and concluding properties of characterization through AFM. dies of polymer-nanocomposite material by f nanostructures on the spectroscopic in UNIT-V y the structural and morphological char es for calculating the size of the nanopart la and mass approximation method acterization of nanomaterials. for size and s	ompo nanc y Fou terac acter acter	and calcula osites and ocomposites r probe met tions have l rizes of nan- and nanoco	the K2 the K2 s hod been K4 ostructures mposites by
2. R Outcom Dbjectiv 1. E 2. C Outcom Dbjectiv 1. X S 2. S k	gap of Raman ne 3 ve 4 Demo 7 Conduc ne 4 ve 5 CRD d Scherre SEM d anown	on bulk materials spectrosc <b>Prepara</b> stabiliza <b>To get t</b> Thin film ctivity stu <b>Effect o</b> taugh <b>To verif</b> emo stud er's formu emo chara SEM ima	and nanoparticles through UV-Vis spectro opy studies on nanomaterials tion of Au, Ag and polymer nanoc ation are inculcated UNIT-IV pography and concluding properties of characterization through AFM. dies of polymer-nanocomposite material by f nanostructures on the spectroscopic in UNIT-V y the structural and morphological char es for calculating the size of the nanopart la and mass approximation method acterization of nanomaterials. for size and s ges	ompo nanc y Fou terac acter acter acter	v and calcula osites and ocomposites r probe met tions have l rizes of nan- and nanocon ce morpholo	the K2 the K2 s hod been K4 ostructures mposites by ogy by using
2. R Outcom Dbjectiv 1. E 2. C Outcom Dbjectiv 1. X S 2. S k Outcom	gap of Raman ne 3 ve 4 Demo 7 Conduc ne 4 ve 5 KRD d Scherre SEM d anown ne C	on bulk materials spectrosc <b>Prepara</b> stabiliza <b>To get t</b> Thin film ctivity stu <b>Effect o</b> taugh <b>To verif</b> emo stud er's formu emo chara SEM ima	and nanoparticles through UV-Vis spectro opy studies on nanomaterials tion of Au, Ag and polymer nanoc ation are inculcated UNIT-IV opography and concluding properties of characterization through AFM. dies of polymer-nanocomposite material by f nanostructures on the spectroscopic in UNIT-V y the structural and morphological char es for calculating the size of the nanopart la and mass approximation method acterization of nanomaterials. for size and s ges structural and morphological character	ompo nanc y Fou terac acter acter acter	v and calcula osites and ocomposites r probe met tions have l rizes of nan- and nanocon ce morpholo	the K2 the K2 s hod been K4 ostructures mposites by
2. R Outcom Dbjectiv 1. E 2. C Outcom Dbjectiv 1. X S 2. S k	gap of Raman ne 3 ve 4 Demo 7 Conduc ne 4 Ve 5 Conduc ne 4 Scherre SEM d cherre SEM d cherre SEM d conduc	on bulk materials spectrosc <b>Prepara</b> stabiliza <b>To get t</b> Thin film ctivity stu <b>Effect o</b> taugh <b>To verif</b> emo stud er's formu emo chara SEM ima <b>Chemical</b> f nanoma	and nanoparticles through UV-Vis spectro opy studies on nanomaterials tion of Au, Ag and polymer nanoc tion are inculcated UNIT-IV opography and concluding properties of characterization through AFM. dies of polymer-nanocomposite material by f nanostructures on the spectroscopic in UNIT-V y the structural and morphological char es for calculating the size of the nanopart la and mass approximation method acterization of nanomaterials. for size and s ges structural and morphological character terials	ompo nano / Fou terac acter icles surfac	v and calcula osites and ocomposites r probe mether tions have be rizes of name and nanocome	the K2 the K2 s hod been K4 ostructures mposites by ogy by using

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	<b>PO10</b>
CO1	S(3)	S(3)	S(3)	S(3)	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)
CO2	S (3)	S (3)	S (3)	S (3)						
CO3	S (3)	S (3)	S (3)	S (3)						
<b>CO4</b>	S (3)	S (3)	S (3)	S (3)						
CO5	S (3)	S (3)	S (3)	S (3)						
W.AV	3	3	3	3	3	3	3	3	3	3

**Course Outcome Vs Programme Outcomes** 

S-Strong(3), M-Medium(2), L- Low(1)

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	S(3)	S(3)	S(3)	S(3)
CO2	S(3)	S(3)	S(3)	S(3)	S(3)
CO3	S(3)	<b>S</b> (3)	S(3)	<b>S</b> (3)	S(3)
<b>CO4</b>	S(3)	S(3)	S(3)	<b>S</b> (3)	<b>S</b> (3)
CO5	S(3)	<b>S</b> (3)	S(3)	S(3)	S(3)
W.AV	3	3	3	3	3

S-Strong(3), M-Medium(2), L- Low(1)

		Semester – II		
DSE	Course code	INFORMATION STORAGE	T Credits: 3	Hours: 3
	533503	MATERIALS AND DEVICES		
		Unit - I		
Objective	1 To unders	tand the essential principles of se	emiconductor d	levice and
	Electron tra	insport properties.		
Overview	of Information	n Storage and Nanotechnology Diffe	erent types of in	formation
storage ma	terials, solid s	state memory, optical memory, mag	netic recording,	emerging
technologie	s, role of nanote	echnology in data storage.		
Outcome	1 Students f	amiliarizing them with basics of Inf	ormation Stora	ge K1
	on use of Na	anotechnology		
		Unit - II		
Objective	2 Become pr	oficient in magnetic and optical pro	operties of mate	erials and
		onic devices		
		rite and read techniques (signal mod		
-		ite principles (read-only, write-once, pl	0	0 1
		ds (key components, diffraction-limited	-	-
-	-	o-loop design, actuator), optical media, 1	hear field optical	recording,
	data storage	C C C		
Outcome	-	knowledge on magnetic properties	of materials an	nd K2
	their app	lications in data storage		
	-	Unit - III		
Objective		owledge about different types of elec	<mark>ctron</mark> ic devices a	and about
	some storag		1	
	-	Magnetic Data Storage Magnetic field	-	-
-		nagnetic and anti-ferromagnetic mater	-	inisotropy,
-	=	netic domain, magnetic hysteresis, super		170
Outcome		nderstanding on the functioning of op	tical materials f	or K2
	optoelectro			
		Unit - IV		
<b>Objective</b>		the selection process which will be us		
0		e read and write head, AMR head, GMI	· 1	
U	00	on, GMR head, ultra-small head desig ilm technology, media noise, superparar	0	recording
Outcome				ir K5
Outcome		s in magnetic media storage	luies and the	
	applications	Unit - V		
Objective	5 Create va	rious electronic and optoelectronic	devices using	suitable
Objective	materials	nous electronic and optoelectronic	utvittes using	suitable
Solid state		ge, spin and phase change based memor	ies (DRAM SRA	M Flach
	•	RRAM, NVFDRAM). Probe storage,		
		1.1.1.1, 1.1.1 Division, 11000 Stolage,	morecular memo	i, atomic
memory and	d quantum info	mation storage.		

Suggested Rea	dings:-										
Erwin R	Erwin R. Meinders, Matthias Wuttig, Liesbeth Van Pieterson, Andrei V.Mijiritskii,										
Optical Data Storage Springer, 2006.											
Seth Lloyd and Y. Jack Ng., November 2004 Black Hole Computers, Scientific											
America	an Magazine.										
Informa	tion in the Holog	graphic Unive	erse, Scientific	American Maga	azine, August,						
Jacob D	Bekenstein, 2003	3									
Wu YH	l, "Nano Spintron	ics for Data	Storage", Ency	clopedia for Na	noscience and						
Nanotec	chnology, vol.7, A	merican Scier	ntific Publishers	, 2003							
Mechan	Mechanics and Reliability of Flexible Magnetic Media, Bharat Bhushan, 2000,										
Springer.											
K1-Remember	K2-Understand	K3- Apply	K4-Analyze	K5-Evaluate	K6-Create						
	C D			A	C						

Course Designed by: Dr. G. Ramalingam, Assistant Professor

					a. 199		0,4			
	<b>PO1</b>	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10
CO1	S(3)	S(3)	S(3)	L(1)	<b>S</b> (3)	S(3)	M(2)	S(3)	M(2)	S(3)
CO2	M(2)	M(2)	S(3)	M(2)	L(1)	L(1)	L(1)	L(1)	S(3)	S(3)
CO3	S(3)	-	S(3)	L(1)	M(2)	<b>M</b> (2)	M(2)	M(2)	L(1)	M(2)
CO4	-	M(2)	L(1)	M(2)	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)
CO5	M(2)	L(1)	L(1)	S(3)	L(1)	<b>S</b> (3)	S(3)	M(2)	S(3)	M(2)
W.AV	2	1.6	2.2	1.8	2	2.4	2.2	2	2.4	2.6

#### **Course Outcome Vs Programme Outcomes**

-

S-Strong (3), M-Medium (2), L-Low(1)

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M(2)	M(2)	M(2)	L(1)	L(1)
CO2	M(2)	-	M(2)	L(1)	L(1)
CO3	L(1)	-	M(2)	L(1)	-
CO4	M(2)	L(1)	S(3)	M(2)	M(2)
CO5	M(2)	M(2)	M(2)	M(2)	S(3)
W,AV	1.8	1	2.2	1.4	1.4

				Seme	ster – II			
DSE		urse Code 533504	Co	omputer S	imulation and lelling	T	Credits: 3	Hours: 3
	•				Unit - I			
Objective	1	To acquire	e the kn	owledge o	f solving system	of line	ear equation	ns using an
		appropriat		-			-	-
Molecular	· Dy	namics Si	mulatio	ons Introdu	uction to Molec	ular I	Dynamics S	imulations;
Molecular	Dy	namics Pro	ograms,	Trajector	y, coordinates	and a	acceleration;	Newton's
equation; I	Lenna	ard-Jones Po	otential	; Free Ener	gy Calculations;	Therm	odynamics	Integration;
Chemical I	Poter	tials; Umbr	rella Sar	mpling; Ap	plication of Mole	cular I	Dynamics Si	imulations.
Outcome	Outcome 1 Students understand the scientific problems represented in K2 mathematical forms such as differential equations and integral equations.							
		•		Uni	it - II			•
Ohiasti	2	Approxim	nate the	e functions	s using polynom	nial in	terpolation	numerical
Objective	2				ion using interp		-	
Characteri	stics				Molecular Dyn			
Molecular I	Dyna	mics using	simple	models; M	olecular Dynamic	cs with	n continuous	potentials;
					operties; Molecu			
Temperatur	е (7	The Anders	son Th	nermostat	and Nose-Hoov	ver T	hermostat);	Molecular
Dynamics	at C	Constant Pr	ressure;	Conform	ational changes	from	Molecular	Dynamics
Simulations	5.		251	LAGAPPA	UNIVERSITY			
Outcome	Outcome 2 Learners skilled with Numerical methods in order to solve K4 scientific problems							
				Unit	- III			
Objective	3	-		-	numerical solut step methods.	tion of	f ordinary o	lifferential
					tance of dynami			
-					el-computational	-		•
engine, Qu	antui	n dynamic	engine	e-m <mark>od</mark> eling	and authoring	system	n-delivery s	system and
assessment	syste		1					
Outcome	3				how to simula id of computatio			-
					t - IV			
Objective		differential	l equati	ons using	of boundary v finite differences	5.	-	-
-					ations- Janus –Fa			
			e, Episte	emic status	s of simulations	, expe	rimental pr	actice with
theoretical i	nstru							
Outcome 4	4	Students a understand			r all branches	includ	ling biology	v can K1
				Uni	t - V			
Objective	5	To Study	simulat	tion and m	onte-carlo meth	ods ar	nd their app	lications
Computation					to computational		lysis- Com	
Nanoscienc	e- D	ensity fun	nctional	theory (	DFT)- Band St	tructur	e and Som	e In-Class
					ulation: Quantur			
chemistry a	nd bi	ology.						
Outcome :	9		nt and	able to c	ical and compu omputations for			

#### Suggested Readings:-

Andrew R. Leach (2001) "Molecular Modeling – Principles and Applications"; Second Edition, Prentice Hall, USA.

Daan Frenkel, Berend Smit (2002) "Understanding Molecular Simulation: From Algorithms to Applications"; Second Edition, Academic Press, USA.

Tavan, P., Carstens, H. and Mathias, G. (2008) *Molecular Dynamics Simulations of Proteins and Peptides*: Problems, Achievements, and Perspectives, in Protein Folding Handbook (eds J. Buchner and T. Kiefhaber, Wiley-VCH Verlag GmbH, Weinheim, Germany.

Charles Xie and Amy Pallant *The Molecular Workbench Software: An Innova-tive Dynamic Modeling Tool for Nanoscience Education*, USA.

Johannes LENHARD, D. Baird, A. Nordmann & J. Schummer (eds.) *Nanoscience and the Janus-Faced Character of Simulations, Discovering the Nanoscale* Amsterdam: IOS Press, 2004.

K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create
				Course	e Designed by
			Dr. G. Ramal	ingam, Assista	ant Professor

							e outer			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	M(2)	M(2)	L(1)	M(2)	S(3)	S(3)	L(1)	M(2)	M(2)
CO2	L(1)	L(1)	-	S(3)	M(2)	M(2)	L(1)	S(3)	M(2)	S(3)
CO3	L(1)	L(1)	L(1)	M(2)	S(3)	L(1)	S(3)	M(2)	S(3)	S(3)
CO4	L(1)	M(2)	S(3)	S(3)	M(2)	<b>L</b> (1)	L(1)	M(2)	S(3)	S(3)
CO5	S(3)	M(2)	-	L(1)	L(1)	S(3)	M(2)	L(1)	M(2)	-
W.AV	1.8	1.6	1.2	2	2	2	2	1.8	2.4	2.2

#### **Course Outcome Vs Programme Outcomes**

#### S-S-Strong(3), M-Medium(2), L-Low(1)

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M(2)	-	-	S(3)	L(1)
CO2	L(1)	-	M(2)	L(1)	S(3)
CO3	L(1)	M(2)	S(3)	-	M(2)
CO4	M(2)	S(3)	S(3)	M(2)	-
CO5	S(3)	(3)	L(1)	L(1)	L(1)
W.AV	1.8	1.6	1.8	1.4	1.4

Course Outcome Vs Programme Specific Outcomes

S-Strong(3), M-Medium(2), L- Low(1)



		Semester – III							
Core	Course code	Nanobiotechnology and	Т	Credits: 4	Hours: 4				
	533301	533301 Nanomedicine							
Unit -I									
Objective 1 To make the students understand the principles behind nanomedicine									
and its application.									
Concept									
Nanotech	Nanotechnology in Biomedical applications. Different types of Nanomaterials used in								
Nanobiotechnology & Nanomedicine – organic nanomaterials: carbon and natural									
polymers-	based nanoma	terials; Inorganic nanomaterials: meta	al ar	nd metal ox	ide based				
nanomater	rials and Hybr	id nanomaterials: organic - organic,	Inorg	ganic – inor	ganic and				
organic –	inorganic nano	composites used for biological and pha	rmac	ceutical appl	ications.				
Outcome	1 Understan	d the concepts of nanotechnology w	hich	n will help	in K2				
	tailoring n	anomaterials for biomedical applicat	ions	•					
	·	Unit II			·				
Objective	2 To provid	le insight on the role of nanoted	chno	ology in su	ıstainable				
	agricultur	e si a a a a a a a a a a a a a a a a a a							
Nanotech	nology in Ag	riculture: Nano-fertilizers efficient a	ltern	ative to con	nventional				
fertilizers,	pesticides ar	nd fungicides. Methods adapted for	the	application	of nano-				
fertilizers	on agricultura	l field – irrigation and foliar spray app	oroac	h. Mechanis	sm behind				
enhanced	nutritional int	ake, nitrogen fixation and photosynthe	esis	of plants us	ing nano-				
	-	nano-fertilizers on plant environmenta	-		-				
from bact	eria, fungal, p	best factors and nutritional deficiency	. Co	ommercially	available				
nano-fertilizers in the market - Fe ₂ O ₃ , CaCO ₃ and ZnO nanoparticles.									
Outcome		nanofertilizers and nanobiosensors	foi	sustainab	le K6				
	agricultur								
		Unit III							
Objective		end the recent updates on bionanom	ater	ials for ana	lysis and				
	sensing tec	-			-				
		bimaging and Diagnosis - Fluoropho							
e		alization for bioimaging. Carbon							
-		tible quantum dots. Nano-biosens		-					
		Nano-biosensors for the detection of							
-		enzymes, DNA, antigens and neuro	otran	smitters, de	tection of				
	_	ms in agro and food products.	P	1. 1.					
Outcome	-	mart and remote assessable sensor	S 10	r biomedic	al Ko				
application									
01:	4 T	Unit IV	- 1	.19					
Objective	Objective 4 To impart knowledge on principles of drug delivery systems and								
Nanataah		varied parameters for effective drug		•	istics of				
		Drug Delivery System: Physicoche							
	-	ersity, morphology, porosity and surfac		-	-				
Types:		earriers, Polymeric nanocarrier, lip ers, silica nanoparticles, antibody ba							
		delivery systems – drug loading, ce							
	-	ed release and bioavailability of dr		-					
	тано. соннон	eu rerease anu proavanaonnev of dr	ugs.	- KINCUC Pa	nameters				

	targeted drug release – pH, temperature and electrostatic interaction. F	Routes
<u> </u>	inistration using nanocarriers. Explore the possibility of applying and analyzing varied	K4
Outcome 4	nanoparticles based targeted drug delivery	174
	Unit V	
<b>Objective 5</b>	To update the recent advancement in nanotechnology in the	e field
	biomedicine and regenerative medicine	
Advanced a	applications of Nanomaterials in biomedical applications: Nanom	edicine
for cancer, o	cardiovascular disorders, neurodegeneration, microbial infections and	wound
healing app	lications. Nanomaterials for tissue engineering, dental and bone im	plants
Antioxidant,	, anti-inflammatory and Antithrombotic potential of nanomaterials. Ad	vanced
tools used in	n nanomedicine - regenerative medicines, nanorobots.	
Outcome 5	Understand recent updates on nanotheranostics agents available	K5
	for cancer treatment, orthopedics and neurological disorders	
Suggested R	eadings:-	
Logot	hetidis, S. (2014). Nanomedicine and Nanobiotechnology. Springer-Ver	rlag.
-	S., & Haldorai, Y. (2015). Organic-inorganic hybrid nanomaterials. S	-
Intern	ational Publishing.	
	h, P. M., (2016). Nanomaterials and nanocomposites: Zero to	thre
	sional materials and their composits. Wiley-VCH.	
	, R. (2016). Handbook of Clinical Nanomedicine: Nanoparticles, In	naging
	py, and clinical application. CRC Press.	0 0
	tte, D. G., & Jhala, Y. K. (2019). Nanotechnology for agriculture	: Cro
_	uction & Protection. Springer.	
	M. (2015). Nanotechnology in Diagnosis, Treatment and Prophyle	axis o
	ious Diseases. Academic Press.	
•	nr, V. K. (2015). Ecofriendly polymer nanocmposites: Chemistr	v an
	cations. Springer, India.	9
	as, S. (2015). Nanotechnology Applications for Tissue Engineering. E	lsevier
USA.		150 1101
	h, S. (2020). Advances in nano-fertilizers and nano-pesticides in agric	ulture
Elsevi		
	in, M. Y. (2015). Nanotechnology for Biomedical Imaging and diagr	nostics
	Nanoparticle Design to Clinical Applications. Wiley.	iosiies
	rgaard, M. C., Kerman, K., Hsing, IM., & Tamiya, E.	(2015)
	biosensors and nanobioanalyses. Springer.	(2013)
	ezescu, A. M. (2017). <i>Nanobiosensors</i> . Elsevier.	
	hetidis, S. (2014). Nanomedicine and Nanobiotechnology. Springer-Ver	rlao
-	nann Jürgen, Siegel, R. A., & Rathbone, M. J. (2012). Fundamenta	-
-	cations of controlled release drug delivery. Springer.	us un
	y, A. M., & Park, K. (2017). Drug delivery: Fundamentals and applic	rations
CRC	•	anons
	ezescu, A. M. (2016). Nanobiomaterials in soft tissue engineering	WΔ
	am Andrew, an imprint of Elsevier.	. wA
	-	
	X. (2014). <i>Cancer Thernostics</i> . Academic press, Elseiver.	WW only
Ge, Y	Y. (2014). Nanomedicine: Principles and Perspectives. Springer, Ne	wyork

Howard, 8. A. (2016). Nanomedicine. Springer Nature.

Lourtioz, J. (2014). *Nanosciences and Nanotechnology: Evolution or Revolution*. Springer, New York.

Mirkin, C. (2015). Nanotechnology-Based Precision Tools for the Detection and Treatment of Cancer. Springer International.

Pathak, Y. (2016). *Drug Delivery Nanoparticles Formulation and Characterization*. Informa Healthcare, USA.

#### **Online Resources**

https://epgp.inflibnet.ac.in/ahl.php?csrno=6https://nptel.ac.in/courses/11810200 3/

https://nptel.ac.in/courses/118107015/

https://onlinecourses.nptel.ac.in/noc17_bt17/preview

https://nptel.ac.in/courses/102104069

Course desig									
	Course designed by								
Dr. N. Suganthy, Assistant Professor									

	<b>PO1</b>	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	<b>PO10</b>
CO1	S(3)	S(3)	S(3)	<b>S</b> (3)	<b>S(3</b> )	S(3)	S(3)	M(2)	S(3)	M(2)
CO2	S(3)	M(2)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)
CO3	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)
CO4	S(3)	S(3)	S(3)	S(3)	S(3)	<b>S</b> (3)	S(3)	M(2)	S(3)	M(2)
CO5	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)
W.AV	3	2.8	3	3	3	3	3	2.4	3	2.6

Course Outcome Vs Programme Outcomes

S-Strong(3), M-Medium(2), L-Low(1)

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	S(3)	S(3)	M(2)	S(3)
CO2	S(3)	M(2)	L(1)	S(3)	S(3)
CO3	S(3)	S(3)	M(2)	M(2)	S(3)
CO4	L(1)	S(3)	S(3)	S(3)	S(3)
CO5	S(3)	S(3)	S(3)	S(3)	S(3)
W.AV	2.6	2.8	2.4	2.6	3

			Seme	ester – III			
Core	C	ourse code	Nanoelectronics	and Nano Devices	Т	Credits: 4	Hours: 4
Core		533302					
		1	U	nit -I			
Objecti	ve 1		and the basic cone and interface engin	cepts, involve in thi peering at atomic	is t	echnology f	or device
Basic (	of Na		0	electronics – capabil	ities	of nano ele	ctronics –
				asics of information t			
				echniques for nanoele			
Outcor	ne 1	Learners r	emember differen	t types of conven	tion	al and nov	el K1
		nanoelectror	nics devices for diff	erent applications			
			Ur	nit-II			
Object	ive 2	To elaborate	e on the various ap	plication where nan	oele	ctronics revo	olutionize
		—	ting technology gro				
	-			lectrics – ferroelectric			
			<b>U</b>	roelectric thin film p	-		0
				ctrochemical cells -			
	-			emiconductor gas so	enso	rs – Identifi	cation of
		-	ses – semiconductor				
Outcor	ne 2	Students an devices	alysis significance	of tunneling effect	in na	anoelectroni	cs K4
		I	Un	it III			
Object	ive 3	To enable nanoelectro		principle and wor	king	g mechanism	of such
Spintre	onics			nsport, spin-depender	nt sc	attering, GN	IR effect,
_				transport, Landau-L		-	
-	-	-	in transfer/torque.				-
			The second se	ots of coulomb bloc	kade	e and electro	on K2
		transport					
		1		it IV			
Object	ive 4			n can facilitate learn	ing	of fabricatio	n process
		and device	5 5				
			0	tron Devices; Nano s			
				istors; Single-Electron			
		-		lar Nanodevices; N	anot	echnology a	nd Nano
-	-		nd Virtual Reality (A				K5
Outcor	ne 4	Evaluation		rty of materials in m	iesos	scopic level	K3
	5	To undoust		uit V na of cilicon clost			awaaa of
Objecti	ve 5	nanoelectror		ns of silicon elect	гопі	cs and pro	gress of
Electro	onic a	and Photonic	Molecular Mater	ials: - Preparation- E	Elect	roluminescen	t Organic
materia	uls- La	aser Diodes –	Quantum well laser	s:- Quantum cascade	laser	s - Cascade	surface –
emittin	g pho	tonic crystal	laser – Quantum do	ts lasers – Quantum v	wire	lasers:- Whit	e LEDs –
				norods High Efficien	•		
Quantu	m we	ll infrared pho	oto detectors-electro	nic properties of carbo	on ba	ased nanomat	erials.

Outcome 5	Learners had cro the operation of n		erlying physic	al process gove	erning to K6				
Suggested R	eadings:-								
Wilson	n, M. A., Ragu	se, B., Kar	nnangara, K.,	Smith, G., &	& Simmons, M.				
(2014)	(2014). Nanotechnology: Basic science and emerging technologies. Strawberry Hills,								
Goser	K., Glösekötter, I	P., & Dienstu	hl, J. (2004). <i>N</i>	Vanoelectronics	and nanosystems:				
From	ransistors to molec	cular and qua	<i>ntum devices</i> . E	Berlin: Springer.					
Waser	, R. (2012). Nano	electronics ar	nd information	technology: Ad	lvanced electronic				
materi	als and novel devic	es. Weinheim	: Wiley-VCH.						
Awsch	alom, D. (2004). S	pin electronic	s. Dordrecht: K	luwer Academic	с.				
Bloor,	D., Bryce, M. R.,	& Petty, M.	C. (1995). Intr	oduction to mol	ecular electronics:				
Londo	n: Arnold.								
Botti,	S. (2007). Physical	Properties of	Carbon Nanotu	ıbes. Trivandrum	1.				
Shul,	R. J. (2001). Wi	de-bandgap	electronic dev	ices. Warrendal	e, PA: Materials				
Resear	ch Society.								
Kasap	S., & Capper, P. (	2017). Spring	er handbook of	electronic and p	photonic materials.				
Cham	Switzerland: Sprin	iger.	See.						
Online Resou	rce	2 ALADAPI	PA UNIVERSITY	5					
http://	www.circuitstoday	.com/nanoele	ctronics						
<u>https:</u>	//link.springer.com	/chapter/10.1(	0 <mark>07/</mark> 978-94-015	5-9576-6 <u>6</u>					
https:	//nptel.ac.in/course	s/117 <mark>1</mark> 0804 <mark>7/</mark>							
https:	https://nanohub.org/								
https:	//www.researchgate	e.net/publicati	ion/320631898	Nanotechnolog	y_and_Nano_compu				
<u>ting</u>	ting								
<u>http://</u>	msl.cs.uiuc.edu/vr/	vrch1.pdf							
K1-Remember	K2-Understand	K3- Apply	K4-Analyze	K5-Evaluate	K6-Create				
		14100	DENSELLE	Cour	se designed by				

## Dr. G. Ramalingam, Assistant Professor

## **Course Outcome Vs Programme Outcomes**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M(2)	S(3)	M(2)	L(1)	S(3)	L(1)	M(2)	M(2)	M(2)	M(2)
CO2	L(1)	S(3)	S(3)	L(1)	S(3)	S(3)	L(1)	S(3)	M(2)	S(3)
CO3	L(1)	S(3)	M(2)	M(2)	-	S(3)	S(3)	S(3)	L(1)	S(3)
CO4	M(2)	M(2)	M(2)	M(2)	S(3)	S(3)	M(2)	L(1)	M(2)	S(3)
CO5	S(3)	L(1)	M(2)	M(2)	L(1)	S(3)	M(2)	M(2)	M(2)	M(2)
W.AV	1.8	2.4	2.2	1.6	2	2.6	2	2.2	1.8	2.6

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	M(2)	S(3)	S(3)	-
CO2	M(2)	S(3)	M(2)	S(3)	M(2)
CO3	-	L(1)	-	S(3)	M(2)
<b>CO4</b>	L(1)	S(3)	M(2)	S(3)	(1)
CO5	M(2)	-	M(2)	S(3)	L(1)
W.AV	1.6	1.6	2	3	1.2

Course Outcome Vs Programme Specific Outcomes

S-Strong(3),	M-Medium(2), L- Low(1)
--------------	------------------------



		Semester – III							
Core	Course code 533303	0 0							
•		Unit - I		•	•				
Objective	indeed seed	new generation nanotechnolog for new industrial revolut nanostructures	-						
Semicondu	ictor Nanostruc	ctures: - Overview- semicor	nducto	or physics, F	abrication				
techniques,	, Electronic struct	ture and physical processes in s	semico	onductor nanos	structures,				
-	0 0	icroscopy -Electron Holography		0					
U		-Magnetic Data Storage -Introdu	iction	- Magnetic Me	dia -				
-		Write Heads -Read Heads.							
Outcome 1		n semiconductor nanoengine	-						
		gist in future industrialist-fabi	ricatio	on and imaging	g				
	techniques								
		Unit - II							
<b>Objective</b>		e revolutionalizing field of mo							
		olecular scale electronics -Mole							
-Carbon m	aterials:Fullerene	and CNTs, Graphene and RGO	- Carb	oon Nanotubes,	Structure				
and Unique	e Properties of Car	bon Nanotubes – types of Carbo	on Nar	notubes - Appli	cations of				
Carbon N	anotubes-CNTs	in field Emission, Shielding,	Field	l-Effect Trans	istor and				
logicgates.									
Outcome 2	2 Various supe	rior <mark>a</mark> nd common nanomater	ials p	ertaining the	K3				
	improved per	formance of C-based nanoelec	tronic	components					
		Unit - III	7						
<b>Objective</b>		dents to develop a range of	_						
		opportunities in a wide r	ange	of industria	l and				
	governmental								
		Systems: - Overview- Micro							
•		epts - fabrication process- choi							
-		ent structures - Nanoelectroni							
		s and disadvantages of differen							
	•	ensors, chemical sensors, mecha			actuators				
		, Micro component assembly and	-	-					
Outcome 3	8 Novel advanc	ed micro and nano electronics	appli	cation	K2				
		Unit - IV							
Objective		he students more knowledge		_	_				
		MEMS nanoscale engineerin	ig an	d to multidis	ciplinary				
NI	teams	Derform D1 ( T			· 1				
		<b>Devices:</b> - Electron Transport		e	•				
-	-	Electron Tunneling - The Datta-	-	-					
-		s transistor - Interface tunnel			-				
		- Spin relaxation and spin dep	-	•	-				
		n in Magnetic Metallic lay			ers -inon-				
Equilibriun	ii Spin Dynamics	in Laterally Defined Magnetic S	iructu	res.					

Outcome 4	Knowing various effect and phenomenon that are the	K2				
Outcome 4	principle behind the working of these nanoelectronic					
	systems Unit - V					
Objective 5						
Objective 5	To form strong nano and photonic materials device technologist					
	nd Photonic Molecular Materials and Devices: - Definitions, e	<b>-</b> ·				
•	, conjugation, excitations, Molecular crystals, conducting vs semi co	-				
	ectroluminescence from an Electrochemical Cell - injection, transpor					
	ight emission, Influence of supramolecular order: excimers, H quid crystallinity.	- and J-				
Outcome 5	Ideas on photoni smake the students suitable for nano K1					
Outcome 5	-					
Suggested R	technology industries					
66	ryce, M. R., & Petty, M. C. (1995). Introduction to molecular el	actronics.				
London:		ecironics				
	ion in solid state & materials science. (n.d.). London, UK:					
-	Science. Diwan, P., & Bharadwaj, A. (2006). <i>Nanorobotics</i> .					
	hi: Pentagon Press.					
	Bharadwaj, A. (2006). <i>Nanorobotics</i> . New Delhi: Pentagon Press.					
	., & Turner, C. W. (1999). Principles of superconductive devic	es and				
	Upper SaddleRiver, NJ: Prentice Hall PTR.					
	lin, G. (2005). Introduction to condensed matter physics. Singapo	re: World				
Scientific						
Goser, K., G	ösekö tter, P., &Dienstuhl, J. (2004). Nanoelectronics and nanosyste	ems: From				
	rstomolecular and quantum devices. Berlin: Springer.					
Hadziioannou	ı, G., &Malliaras, G. G. (2007). Semiconducting polymers:					
Chemistr	y, physics and engineering. Weinheim: Wiley-VCH.					
Heinzel, T. (	2010). Mesoscopic electronics in solid state nanostructures. Weinh	eim:				
Wiley-V	CH. Lu, G. Q., & Zhao, X. S. (2006). Nanoporous materials: Science	and				
engineer	ing. London: Imperial College Press.					
Marder, M. P	. (2015). Condensed matter physics. New York: John Wiley and Sons	5.				
OHandley, R	. C. (2000). Modern magnetic materials: Principles and applica-	tions.				
New Yo	rk: Wiley. Verdeyen, J. T. (2003). Laser electronics. Taipei: Pe	arson				
Educatio	n Taiwan.					
	Wnek, G. E., &Trantolo, D. J. (1998). Electrical and optical					
	systems: Fundamentals, methods and applications. New York:					
Dekker.						
	rmans, S., &Somorjai, G. A. (2004). Nanotechnology in catalysis. N	New York:				
Springer.						
Majumder, Manoj Kumar . (, 2020). Introduction to Microelectronics to						
Nanoelectronics: Design and Technology. United Kingdom, CRC Press.						
Suvardhan Kanchi, Deepali Sharma. (2020).Nanomaterials in Diagnostic Tools						
	ces. Netherlands, Elsevier Science.					
Online Reso						
-	'nptel.ac.in/downloads/115106076/					
https://	nptel.ac.in/syllabus/syllabus_pdf/115106076.pdf					

nptel.ac.in/syllabus/syllabus_pdf/115104044.pdf https://nptel.ac.in/courses/115106076/14								
K1-Remember	K2-Understand	K3- Apply	K4-Analyze	K5-Evaluate	K6-Create			
	Course designed by							
			]	Dr. P.Shakkthi	ivel Professor			

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10
CO1	S(3)	S (3)	S (3)	M(2)	M(2)	S (3)	S (3)	<b>M</b> (1)	S (3)	M(2)
CO2	S (3)	M(2)	L(1)	S (3)	M(2)					
CO3	S (3)	S (3)	S (3)	M(2)	S (3)	S (3)	S (3)	L(1)	S (3)	M(2)
CO4	S (3)	S (3)	M(2)	S (3)	S (3)	S (3)	M(2)	L(1)	M(2)	S (3)
CO5	S (3)	S (3)	M(2)	S (3)	S (3)	S (3)	S (3)	M(2)	S (3)	S (3)
W.AV	3	3	2.6	2.6	2.8	3	2.6	1.2	2.8	2.4

## **Course Outcome Vs Programme Outcomes**

S-Strong(3), M-Medium(2), L- Low(1)

**Course Outcome Vs Programme Specific Outcomes** 

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M(2)	S(3)	S(3)	M(2)	S(3)
CO2	S(3)	M(2)	S(3)	M(2)	S(3)
CO3	S(3)	S(3)	M(2)	S(3)	M(2)
<b>CO4</b>	M(2)	S(3)	S(3)	M(2)	S(3)
CO5	S(3)	M(2)	M(2)	S(3)	M(2)
W.AV	2.6	2.6	2.6	2.4	2.6

S-Strong(3), M-Medium(2), L- Low(1)

		Semester- III							
Core Cours	e code	Microsystem Technology	Т	Credits: 4	Hours: 4				
533	304								
		Unit-I							
<b>Objective 1</b>	To l	earn about modern chip manufacturing,	with	the main	focus to				
design MEMS devices									
Design and	l Pro	cess Methods: -Basics of electronic de	sign-	Electronic	Design				
e		), Design for Manufacturing (DFM) - Process	U		U				
		on methods: Physical Vapor Deposition (Sput	0						
	-	ation-Patterning approaches-Thin film senso		1					
		icro ECM and EDM	,		1				
Outcome 1	1	lents learn the basics and manufactu	ing	process o	f K2				
		cosystem devices	U	•					
	1	Unit-II							
<b>Objective 2</b>	To k	now about various fabrication methods for	devi	ces.					
Fabrication	Proce	ess: - Silicon fabrication processes. Silicon mic	crom	achining (we	et), Dr				
		gies for metals, semiconductors and inst		-					
fabrication to	echniq	ues- MEMS packaging hierarchy							
Outcome 2	Lear	rners able to create electronic devices			K6				
		Unit- III							
<b>Objective 3</b>	То	construct the knowledge about concept	s in	volving lith	ographic				
Ū		niques		0					
Lithograph	y: - S	ilicon MEMS fabrication technology, Adva	nced	lithography	/ (e-beam				
lithography,	radi	ation for imaging (UV, X-rays, synch	rotro	on, masking	g issues),				
Lithographic	ally ir	nduced self-construction (LISC), Nano imprint	litho	graphy.					
Outcome 3	Acqu	ire knowledge for the design of semic	ondu	ctor device	es K2				
	throu	gh lithography techniques							
		Unit- IV							
<b>Objective 4</b>	To e	ducate the students about MEMS based ser	sor a	and its appl	ications				
<b>MEMS</b> Pac	kaginį	g & Sensors: Types & controls - Technologies	- Pac	kaging of M	EMS				
devices by	anod	lic/fusion bonding, Pressure sensors and	pac	ckaging, M	EMS				
performance	and	evaluation. Bionanosensor devices- comm	unica	able disease	and				
biological th	reat de	etection.							
Outcome 4	Able	e to explore the Sensors fabrication, asse	mbli	ing, and	K4				
	func	tion							
		Unit- V							
<b>Objective 5</b>	То	apply knowledge on Development of de	vice	or chip d	lesigning				
	-	ocols							
		cation: - System on chips (SOC)- System							
		l related fabrication techniques- Si carbide M							
-Integration	of Mic	crosystems with electronics including RF MEM	MS a	nd the explo	itation of				
Microsystem	1								
Outcome 5		rners will have Capability to fabricate ME	MS	devices for	r <b>K3</b>				
	Prac	ctical application							

Suggested Readings:-
Dieter, G. E. (1991). Engineering design: A materials and processing approach.
McGraw-Hill.
Beeby, S. (2004). MEMS mechanical sensors. Boston: Artech House.
CERAMIC MATERIALS FOR ELECTRONICS. (2019). S.I.: CRC PRESS.
Implications of emerging micro- and nanotechnologies. (2002). Washington, D.C.:
National Acad. Press. Meisami, E., & Timiras, P. S. (1988). Handbook of human
growth and developmental biology. BocaRaton, FL: CRC Press.
Harper, C. A. (2000). Electronic Packaging and Interconnection Handbook.
McGraw-Hill. Pileni, M. P. (2005). Nanocrystals forming mesoscopic structures.
Chichester: John Wiley distributor.
Tay, F. E. (2002). Materials & process integration for MEMS:. Boston: Kluwer
Acad. Publ.
Online Resource
https://epgp.inflibnet.ac.in/ahl.php?csrno=6
https://epgp.inflibnet.ac.in/ahl.php?csrno=831
http://www.owlnet.rice.edu/~phys534/notes/week07_lectures.pdf
http://www.cense.iisc.ac.in/research/mems-and-nems-sensors
http://faculty.uml.edu/zgu/Teaching/documents/Lecture04-24-13.pdf
1-Remember K2-Understand K3-Apply K4-Analyze K5-Evaluate K6-Create

Course D	esigned by <b>E</b>	r. K.	Gurunath	an,Professor &	: Head

## Course Outcome Vs Programme Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	<b>PO9</b>	PO10
CO1	S(3)	M(2)	M(2)	M(2)	M(2)	M(2)	L(1)	L(1)	M(2)	M(2)
CO2	M(2)	M(2)	M(2)	S(3)	M(2)	S(3)	S(3)	L(1)	S(3)	M(2)
CO3	S(3)	S(3)	M(2)	M(2)	S(3)	S(3)	L(1)	L(1)	S(3)	M(2)
CO4	S(3)	S(3)	S(3)	M(2)	M(2)	M(2)	M(2)	M(2)	S(3)	M(2)
CO5	S(3)	M(2)	M(2)	S(3)	M(2)	S(3)	L(1)	M(2)	S(3)	S(3)
W.AV	2.8	2.4	2.2	2.4	2.2	2.6	1.6	1.4	2.8	2.2

S-Strong (3), M-Medium (2), L- Low (1)

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M(2)	M(2)	S(3)	S(3)	M(2)
CO2	S(3)	L(1)	M(2)	S(3)	S(3)
CO3	S(3)	S(3)	S(3)	M(2)	S(3)
CO4	S(3)	S(3)	M(2)	M(2)	M(2)
CO5	S(3)	S(3)	L(1)	M(2)	S(3)
W.AV	2.8	2.4	2.2	2.4	2.6

**Course Outcome Vs Programme Specific Outcomes** 

S-Strong (3), M-Medium (2), L- Low (1)



			Semester-III								
Core	Cour	se code	Nano science and Technology-lab	II I	P Credits:4	Hou	rs: 8				
	533	3307	(Nano-biotechnology Experiments	)							
			Unit -I								
Objec	tive 1	Teach s	tudents about safe and good labo	rator	y practice t	o be follo	wed in				
			logy, biochemistry and nanotechnolo	0.							
1.	Introdu	action to	Nanobiology Laboratory - Instrum	entatio	on, Good L	aboratory l	Practices,				
	Demonstration of bio-safety measures, Autoclaving and sterilization of culture media										
2.	2. Handling biological samples and BSL Facilities (Plant origin, Animal Origin, Microbiological)										
3.	-		ffers and Ph measurement								
Outco	me 1	Students	Students will acquire basic knowledge on handling instrumentsK1								
	T		Unit -II								
Objec			the students on techniques for isolat		0	-	anism				
1.											
2.											
3. Measurement of growth-Growth curve											
4. Preservation and maintenance of microbial cultures.											
5.		-	antification of DNA and Protein fr	om n	nicrobial sou	rce- Agaro	se Gel				
		1	nd (ii) SDS – PAGE Electrophoresis								
6.			otein – Bardford Method/Lowry metho	_							
Outco	ome 2		s will obtain knowledge in handling	micr	obial and m	olecular	K2				
		biology	techniques								
011			Unit - III								
Obje	ctive 3		the <mark>skill</mark> singreensynthesisofnanoparti	1.00							
1.		-	esis of nanoparticles from bacteria an	l fung	gi–Metal (Ag	, Pd), meta	l oxide				
	· · · ·	TiO ₂ , Fe ₂									
2.			ynthesis of nanoparticles – ZnO, MgO.								
3.		1	anoparticle separation – Centrifugation	Sedin	mentation						
4.	Charac	1	of synthesized nanoparticles								
Outco	ome 3		he knowledge on biomimetics for	0		ynthesis of	: K3				
		nanopa	ticles and apply it in the field of biol	gical	research.						
		T	Unit IV								
Obje	ctive 4	Deciphe	r the knowledge of interaction of nar	opart	icle with the	living syste	em				
1.			timicrobial activity of synthesized nan	opartic	cles.						
2.			f synthesized nanoparticles.								
3.	Evalua	ting the b	ological activity of immobilized nanop	article	S						
4.	Biocon	jugation of	f nanomaterials with DNA and Protein								
Outco	ome 4	Proficie	nt in synthesizing and characteriz	ng na	anoparticles	that finds	K5				
		applicat	ions in biomedical and industrial set	ups							

		U	nit V					
Objective 5	To provide basic	insights on the	toxicity evaluati	on of nanomater	ials			
1. Assessment of	of toxic effect of n	anomaterials un	der in vitro condit	tions				
2. Assessment of	of hemolytic effec	t of nanomateria	lls under <i>in vitro</i> c	onditions				
3. Toxicity eval	luation of nanoma	terials under in	vivo conditions u	ising Artemia sal	ina, Zeb	ra fish		
as m	odel system.							
Outcome 5	Design and	conduct expe	riments to eval	uate the toxici	ty of	K6		
fabricated nanomaterials								
Suggested Read	ings:-							
Green, M.	R., & Sambrook	, J. (2012). Mol	lecular cloning. A	Laboratory Man	ual 4th			
Bergey, I	D. H. (1994). Ber	gey's manual	of determinative	bacteriology. Li	ppincott			
Williams	&WilkinsKann	an,N.(2002).La	boratoryManualir	n GeneralMicro	biology.			
Panima.								
Katoch, P.	. (2016). Analytics	al techniques in	Biochemistry and	d Molecular Biolo	ogy. Spri	nger		
New York	.Katoch, R. (2011	). Analytical tec	hniques in Bioche	mistry and Molec	ular Biol	logy.		
Springer 1	New York.Poiner	n, G. E. J. (20	014). A laborator	y course in nand	oscience	and		
nanotechn	ology. CRC Press	S ALAGAPPA						
Singh,O.V	.(2015).Bio-Nano	particles:Biosyr	nthesisandSustaine	ableBiotechnologi	icalImpli	cations,.		
Wiley-Bla	ckwell.							
<b>Online Resourc</b>	e							
https://vlab.amr	ita.edu/?sub=3&ai	np;b <mark>rc</mark> h=73	202112					
K1-Remember	K2-Understand	K3- Apply	K4-Analyze	K5-Evaluate	К6-С	Create		
·		C CC		Course Desi	gned by			
			Dr. N. S	uganthy, Assista	nt Profe	ssor		

Course Outcome Vs Programme Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M(2)	M(2)	L(1)	M(2)	S(3)	M(2)	S(3)	S(3)	L(1)	M(2)
CO2	M(2)	M(2)	L(1)	L(1)	S(3)	M(2)	S(3)	S(3)	S(3)	S(3)
CO3	M(2)	M(2)	L(1)	S(3)	S(3)	M(2)	S(3)	S(3)	M(2)	L(1)
CO4	S(3)	L(1)	L(1)	M(2)	M(3)	M(2)	S(3)	S(3)	S(3)	M(2)
CO5	S(3)	M(2)	M(2)	S(3)	S(3)	S(3)	M(2)	M(2)	S(3)	S(3)
W.AV	2.6	1.8	1.2	2.2	3	2.2	2.8	2.8	2.2	2.4

S-Strong(3), M-Medium(2), L- Low(1)

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M(2)	L(1)	S(3)	M(2)	L(1)
CO2	L(1)	M(2)	S(3)	M(2)	L(1)
CO3	L(1)	S(3)	M(2)	L(1)	M(2)
<b>CO4</b>	M(2)	M(2)	M(2)	S(3)	L(1)
CO5	S(3)	M(2)	M(2)	S(3)	L(1)
W.AV	1.8	2	2.4	2.2	1.2

Course Outcome Vs Programme Specific Outcomes

S-Strong(3),	M-Medium(2), L- Low
--------------	---------------------



	Semester – III										
DSE	Course code 533505	POLYMER NANOCOMPOSITES	J	Г	Credits: 2	Hours: 3					
		Unit - I									
<b>Objective</b>	l To introduc	e students to the classification of nane	DCO	m	posites						
Nanocompo	site Classifica	tion Classification – Hydrolysis – synt	hes	sis	– mechanio	cal analysis					
<ul> <li>polyphospi</li> </ul>	hazene nanoco	mposite – Nanocomposite applications	- I	po	lymer nano	composites					
<ul> <li>processing</li> </ul>	polymer nano	composites – clay containing polymeric	e na	nc	composites	s (CPNC) –					
synthetic processing of clay based nanocomposites.											
Outcome 1		basic and fundamental aspect	ts	0	f polyme	r K2					
	nanocompos	ites and their properties									
	1	Unit - II									
<b>Objective</b> 2		knowledge on various biodegrada	ble	9	polymers	and their					
	properties										
-		Definition and categories – properties									
=	-	oosite technology – techniques used									
		adable polymers and their nanocompo	site	es	- biodegr	adability –					
		adable nanocomposites									
Outcome 2		the students various techniques			preparatio	nKI					
	methous of t	iodegradable polymers Unit - III									
Objective			no	ait	og and the	in vonious					
Objective.	types.	details about rubber clay nanocom	ho	SIL	es and the	ir various					
Rubber clay	• -	es Overview of rubber - natural rubbe	r _	CV.	nthetic nol	visonrene -					
-	and the second s	– butyl rubber – polybutadiene – et		-		-					
-		ubber – Rubber crosslinking system	-								
		on – structure – silicon rubber clay nanc				accel elay					
		to discern the use of rubber materia				e <b>K4</b>					
	applications				TI I I	-					
	11	Unit - IV									
<b>Objective</b> 4	To enable	them to be aware of the magnetic	po	ly	mer nanoo	composites					
Ū		as of preparation and characterizatio		·		-					
Magnetic p	olymer nanc	composite Introduction – classificat	ion	1 (	of magneti	c polymer					
nanocompos	ites – Powders	and suspensions – fibers – films – syn	the	sis	s – precipita	ation of the					
magnetic co	omponent – n	nixing of the polymer and the magn	neti	с	component	– In situ					
polymerizati	on – In situ p	recipitation – characterization – transi	tio	n e	electron mi	croscopy –					
high resoluti	on electron mi	croscopy - electron energy loss spectro	osco	op	y – mappin	g magnetic					
		tic properties – single domain particles									
Outcome 4		e importance of polymer magnetic a			—	n K3					
	the field of r	esearch and their interest around the	W0	orl	d						
	- ]	Unit - V									
Objective 5	-	size on the property of wear	re	esi	stance of	polymer					
***	nanocompos		6								
		nanocomposites Introduction – sur									
		ods – wear performance and mechan									
content of th	e nano fillers -	- Tribochemistry - effect of surface trea	tm	en	t of the nan	o fillers.					

Outcome 5 H	How polymer com	posites enha	ance variety of	properties in v	ariety K6				
of	f application fields	6							
Suggested Rea	dings:-								
Yiu-Wing Mai and Zhong-Zhen Yu, Polymer nanocomposites, CRC Press Boca Raton									
Boston New	Boston New york Washing ton, DC. and Woodhead publishing ltd, England, 2006.								
Parag Diwa	n and Ashish Bhara	adwaj, Nanoo	composites, Per	ntagon Press.					
Pulickel M.	. Ajayan , Linda S	S. Schadler,	Paul V Braun	n, Nanocomposi	ite Science and				
Technology	,Wiley-VCH,2006								
Gero Deche	er, Joe Schlenoff, M	Iultilayer Thi	n Films, Wiley-	VCH, 2006.					
K1-Remember	K2-Understand	K3- Apply	K4-Analyze	K5-Evaluate	K6-Create				
				Cours	se designed by				

Dr. P. Shakkthivel, Professor

	<b>PO1</b>	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	<b>PO10</b>
CO1	S(3)	S(3)	M(2)	M(2)	M(2)	M(2)	L(1)	L(1)	M(2)	M(2)
CO2	S(3)	S(3)	S(3)	M(2)	S(3)	L(1)	M(2)	L(1)	S(3)	L(1)
CO3	S(3)	S(3)	S(3)	S(3)	S(3)	M(2)	S(3)	L(1)	S(3)	S(3)
CO4	S(3)	S(3)	S(3)	M(2)	S(3)	M(2)	S(3)	L(1)	S(3)	S(3)
CO5	S(3)	S(3)	S(3)	<b>S</b> (3)	S(3)	M(2)	S(3)	M(2)	S(3)	S(3)
W.AV	3	3	2.8	2.4	2.8	1.8	2.4	1.2	2.8	2.4

## Course Outcome Vs Programme Outcomes

S-Strong(3), M-Medium(2), L- Low(1)

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	M(2)	S(3)	M(2)	S(3)
CO2	M(2)	S(3)	M(2)	S(3)	M(2)
CO3	S(3)	M(2)	S(3)	S(3)	S(3)
<b>CO4</b>	M(2)	S(3)	S(3)	M(2)	M(2)
CO5	S(3)	M(2)	M(2)	M(2)	S(3)
W.AV	2.6	2.4	2.6	2.4	2.6

S-Strong(3), M-Medium(2), L- Low(1)

		Semester – III			
DSE	Course code	NANO BIOMATERIALS AND	Τ	Credits:	Hours:
	533506	NANOBIOTECHNOLOGY FOR		2	3
		<b>TISSUE ENGINEERING</b>			
		Unit I			
Objective	1 To unders	tand the material classifications in o	rtho	odontic ar	nd dental
	implants a	and their limitations			
Orthopedi	c Orthopedic im	plants-materials used- modes of failure	- we	ar debris;	stress and
strain imba	alances at the tis	ssue implant interface. Dental: Dental m	ater	ials used-	modes of
dental imp	ants failure –del	oris: stress and strain imbalances at the tis	sue	implant in	terface.
Outcome	1 Attain k	nowledge for optimizing nanomate	rials	s in tissu	e K3
	engineering				
		Unit II			
Objective	2 To gain the vascular gr	e knowledge about the materials used i afts	in th	e chondro	ocyte and
Cartilage	9	als used-modes of cartilage implant failu	ıre -	-wear debr	is : stress
_	-	he tissue implant interface; Vascular: va			
		failure - wear debris stress and strain			
implant int					
Outcome		ained from the subject to be useful fo rentions in the field of stomatology	r th	e advance	d K3
		Unit III			
Objective	3 To impart of	detailed knowledge about the need and	cha	llenges of	cartilage
U	and the second s	in the body		U	U
<b>Bladder</b> B	ladder implant	materials used -modes of cartilage imp	lant	failure -	stress and
strain imba	lances at the tiss	ue implant interface.			
Outcome		ht on interaction of nanomaterials wit	h th	e biologica	alK4
		ling source of information for the new i			
		Unit IV			
Objective	4 To underst	tand the pharmacodynamics of nano-in	npla	nts in the	body
Implantati		of Nanomaterials use as implants -	_		-
		irable and undesirable reactions of the			
materials					
Outcome	4 Basic info	rmation obtained from this subject	pr	ovides th	e K5
	opportunity	y in the nanotechnology-based tiss	1e (	engineerin	g
	research				
		Unit V			
Objective	5 To provide	e information on mode of interaction	s of	the nano	materials
-	with biolog	ical molecules			
Applicatio	0	tion Protein interactions with implant	ed 1	naterials :	-Cellular
recognition	-	s Absorbed on materials surfaces –			
differentiat		xtra cellular matrix deposition leading			-

Outcome 5 Students will develop innovative ideas and approaches for the K	6
construction of bio-transplants with nanosized materials	

#### Suggested Readings:-

Jon J.Kellar, Functional fillers and nanoscale minerals; new markets / new horizons; SME science,2006.

Chellakumar, Tissue, Cell and Organ Engineering, Wiley-VCH, 2006.

R.Haffman and E.D.Zanjani, Stem Cell Transplantation, Wiley-VCH, 2005.

Richard S.Silberglit, Philip S.Anton, James Schneider, The global technology revolution: bio/nano/materials trends and their synergies with information; Rand Corporation; 2001.

Joachim Schnmmer, Davis Barid, Nanotechnology Challenges: implications for Philosophy - Ethics and Society; World Scientific; 2006.

Davis Baird, Alfred Nordmann, Joachim Schummer, Discovering the nanoscale - IOP press; 2004.

William A. Goddard, Sergey, Edward Lyshevski, Donald W.Brenner, Hand book of nanoscience, Engineering and technology, CRC press; 2003.

Mark A.Ratner, Daniel Ratner, A gentle introduction to next big idea - Nanotechnology: Prentice Hall PTR; 2003.

William Sims Bainbridge, Mihail C.Roco, Societal implication of Nanoscience and Nanotechnology, Springer; 2001.

B.C.Cradall, Molecular speculations on global abundance - Nanotechnology: MIT press;1996.

K1-Remember	K2-Understand	K3- Apply	K4-Analyze	K5-Evaluate	K6-Create			
	Course Designed by							
Dr. N. Suga	Dr. N. Suganthy, Assistant Professor							

Course	Outcome	Vs	<b>Programme Out</b>	comes
--------	---------	----	----------------------	-------

	<b>PO1</b>	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	<b>PO8</b>	PO9	PO10
CO1	M(2)	S(3)	S(3)	S(3)	S(3)	S(3)	M(2)	M(2)	M(2)	M(2)
CO2	S(3)	S(3)	S(3)	M(2)	M(2)	S(3)	M(2)	M(2)	M(2)	M(2)
CO3	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	M(2)	M(2)	M(2)
<b>CO4</b>	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	M(2)	S(3)
CO5	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)
W.AV	2.8	3	3	2.8	2.8	3	2.6	2.2	2.2	2.4

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	L(1)	S(3)	S(3)	M(2)	M(2)
CO2	M(2)	S(3)	S(3)	S(3)	M(2)
CO3	M(2)	M(2)	M(2)	S(3)	L(1)
CO4	M(2)	M(2)	M(2)	S(3)	M(2)
CO5	M(2)	S(3)	S(3)	S(3)	S(3)
W.AV	1.8	2.6	2.6	2.8	2

Course Outcome Vs Programme Specific Outcomes

Strong(3), M-Medium(2), L- Low(1)



			Semester- IV						
Core	Course	code	Nanotoxicology	Т	Credits: 4	Hours: 4			
	5334	01							
			Unit - I						
Objec	tive 1	To	impart knowledge on diverse dimension	ns of	nanomateria	ls and its			
		inte	raction with environment						
Introd	luction	- Na	nopollution – Natural source, anthropogeni	c sou	rce, Environi	mental and			
occupa	ational e	exposu	re, Aerosol, Entry routes into the human body	– Lur	igs, intestinal	tract, skin,			
Physic	ochemi	cal ch	aracteristics of nanomaterials - Effect of	size,	shape, surface	ce charge,			
solubil	lity and	surfac	e coatings						
Outcome 1Acquire knowledge on routes of entry of nanomaterials, itsK1physiochemical properties and its impact in environmental pollutionF									
			Unit II						
Objec	tive 2	To syst	provide insight on mechanism of interaction rem	n of n	anomaterials	in cellular			
Mecha	anism o	f cellu	lar interaction: - Interactions of Nanoparticle	es with	Cells and the	eir Cellular			
Nanote	oxicolog	gy – C	ellular uptake, Reactive oxygen species media	ted to:	xicity - Oxida	tive stress,			
inflam	mation,	genot	oxicity, hemolytic activity and Immunotoxicity	у.					
Outco	me 2		erstand the mode of cellular entry of nar	nopart	ticles and its	K2			
			Unit III						
Objec	tive 3	Tor	reate awareness regarding the toxic effec	t of r	anomaterial	to human			
Objee		healt			lunomuteriu	to numun			
Huma	n expo		to Nano sized Materials: - Nanoparticles	s inte	raction with	biological			
	_		ion of NSPs in the respiratory tract, Studies			-			
		-	ry tract, Neuronal uptake and translocation, T						
		-	m, Translocation of NSPs in the liver, spleer			•			
			city of nanoparticles in the eye.						
Outco			te properties of nanomaterials with the	eir tr	ansport,	K2			
			ke, reactivity and toxicity in human system		-				
			Unit IV						
Objec	tive 4	To i	ntroduce students to various tests and n	nodel	systems ava	ilable for			
		toxic	ity evaluation						
Assess	sment o	f nan	otoxicity: Toxicity assessment- Laboratory	rodent	studies, Ecot	oxicologic			
studies	s, Metho	odolog	y for Nanotoxicology: in vitro toxicity studie	s - Ce	ll viability (N	ITT assay,			
lactate	dehyd	lrogen	ase release), ROS generation, genotoxicit	y (Co	omet assay	and DNA			
fragme	entation	assay	), mutagenicity (Ames test), and Hemolytic as	say. I	In vivo toxicit	y testing –			
Zebra	fish and	Mice	Rat as model system: Acute and subacute tox	icity s	tudies, LD 50	and LD90			
determ	ination								
actorn									
Outco	me 4	Lear	ners critically evaluate the toxicity of na	noma	terials using	5 K5			

		Un	it V					
Objective 5	To emphasize the			l while using nanom	aterials			
<b>Dosimetry,</b> I assessment – Implications, I	<b>Risk Assessment</b> Understanding the s Development of Te , Exploration of pa	and Executi ocial impact	on: - Inhaled of nanotechnolo for Nanomater	nanoparticle dosim gy, Ethical, Legal ar ials – Regulation of nanotechnology, nar	etry, Risk nd Social Engineered			
	Learners acquire information on ethics laws and regulation of nanomaterials to comprehend the challenges and risk involved in nanotechnology       K3							
Suggested Re								
Duran, N. (2 Newyor Gatti, (2015).	014). Nanotoxicolog tk. Case Studies in Nar 018). Nanotoxicolog	notoxicology a	and Particle Toxi	r, and Assessments. Cology. Academic Pr Assessment and Man	ess.			
Monteiro-Riv Taylor a Njuguna, J. <i>Nan0co</i> Elsevie Otsuki, T. (20 Ramacha USA. Sa Sutariya, V. (2 Nancy A. Mo Second e G. Ramachano USA, 20	iere (2014). Nanot and Franscis. (2014). Health a mposites and other r, UK. 016). Biological Effe andran, G. (2011). dem, (2015). Inhalat 014). Biointeraction nteiro-Riviere, C. La edition, CRC Press, T dran, Assessing Nano 011	and Environ material con octs of Fibrou Assessing Na ion Toxicolog s of Nanomate ang Tran, Nan Taylor and Fra oparticle Risk	nental Safety taining nanopar as and Particula anoparticle Risk ay., CRC Press, L erials. CRC press notoxicology: Pr anscis, Boca Rate as to Human Hed	s. rogress towards Nan	<i>Polymer</i> ablishing, ger, Japan. b. Elsevier, <i>omedicine</i> , v, Elsevier,			
Polymer Publishi Online Resou <u>http://t</u>	<i>Nancomposites</i> a ng, Elsevier, UK, 20	nd other m 14. n/102107058/ ptel/courses/v	aterial contains / <u>lec20.pdf</u> ideo/102108077/	ing nanoparticles,				
	/www.slideshare.net/							
K1-Remember	K2-Understand	K3- Apply	K4-Analyze	K5-Evaluate K	6-Create			
	•		Dr. N. S	Course of the co	designed by <b>Professor</b>			

	<b>PO1</b>	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	PO9	<b>PO10</b>
CO1	M(2)	S(3)	M(2)	M(2)	M(2)	M(2)	M(2)	M(2)	S(3)	S(3)
CO2	S(3)	S(3)	M(2)	M(2)	M(2)	S(3)	M(2)	M(2)	S(3)	M(2)
CO3	S(3)	S(3)	M(2)	S(3)	M(2)	M(2)	M(2)	M(2)	S(3)	M(2)
CO4	S(3)	S(3)	M(2)	S(3)	M(2)	M(2)	M(2)	M(2)	S(3)	M(2)
CO5	S(3)	S(3)	S(3)	S(3)	M(2)	M(2)	M(2)	M(2)	M(2)	M(2)
W.AV	2.8	3	2.2	2.6	2	2.2	2	2	2.8	2.2

**Course Outcome Vs Programme Outcomes** 

S-Strong(3), M-Medium(2), L- Low(1)

## Course Outcome Vs Programme Specific Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	S(3)	<b>S</b> (3)	S(3)	M(2)
CO2	M(2)	S(3)	M(2)	S(3)	M(2)
CO3	M(2)	S(3)	S(3)	<b>S</b> (3)	M(2)
CO4	M(2)	<b>S</b> (3)	S(3)	<b>S</b> (3)	M(2)
CO5	M(2)	S(3)	S(3)	<b>S</b> (3)	M(2)
W.AV	2.2	3	2.8	3	2

S-Strong(3), M-Medium(2), L- Low(1)

	Semester-II
NME Course	e code Introduction to Nano Scale in Science and T Credits: 2 Hours:
	Technology
	Unit -I
<b>Objective 1</b>	To introduce students to the history and basic of origin of
	Nanotechnology
Scientific Re	volutions: - Types of Nanomachines and Nanotechnology-Periodic table- Atomi
structure mol	lecules and phase energy-Molecular and atomic size-Surfaces and dimensiona
space-Top dov	wn and bottom up.
Outcome 1	Basics of nanotechnology in physical and chemical points of view K1
	Unit-II
<b>Objective 2</b>	To introduce students to the various forces of bonding and how the
	dominate the regime at nanoscale. To teach the various synthesis of such
	nanomateirals
Chemical bo	onding: - Forces between atoms and molecule particles and grain boundaries
surfaces-Stron	ng inter molecular forces-Electrostatic and Vander Waals forces between surfaces-
Similarities a	and differences between intermolecular and inter particle forces- covalent and
coulomb inte	eractions-Basic principles of Nano Scale materials, Synthesis, processing,
Mechanical g	rainding, wet chemical synthesis- Sol-gel processing
Outcome 2	Be well-versed in the common yet widely used methods of synthesis K2
	of nanomaterials
	Unit III
<b>Objective 3</b>	To study the band structures at nanoscale
Band structu	<b>ire:</b> - Opportunity at the nano scale-length and time scale in structures- energy
landscapes-In	ter dynamic aspects of inter molecular forces-Evolution of band structure and
Fermi surface	
Outcome 3	Familiarize the concept of quantum dots and their unique K4
	behavioral attributes
	Unit IV
<b>Objective 4</b>	To introduce them to the fundamentals of quantum scale and biological
	membranes
Quantum sca	ale and biological membranes: - Quantum dots - Nano wires - Nano tube2D and
3D films Na	ano and mesopores, miscelles bilayers, vesides-binano machines- biological
membranes.	
Outcome 4	Well – equipped in the basic of nanomaterials in biological K3
	membranes

Unit V						
Objective 5	To introspect the various fascinating properties of nanomaterials					
	explained with appropriate examples					
Properties: -	Properties: - Influence of nano structuring on Mechanical, optical, electronic, magnetic and					
chemical prop	erties-Grain size effects on strength of metals optical properties of quantum dots					
and quantum	wires-electronic transport in quantum wires and carbon nano tubes-magnetic					
behavior of	single domain particles and nanostructures -surface chemistry of tailored					
monolayer-self assembling.						
	Be acquainted with unique examples to understand nanomaterial's K5 various fascinating properties that finds application in various					

# Suggested Readings:

technologies we rely on

Hornyak, G. L. (2009). Fundamentals of nanotechnology. Boca Raton: CRC Press. Fiorani, D. (1994). Fundamental properties of nanostructured materials: National School of the Condensed Matter Group, Rimini, Italy, September 20-25, 1993. Singapore: World Scientific.

Goddard, W. A. (2007). *Handbook of nanoscience, engineering, and technology*. Boca Raton, FL: CRCPress.

Poole, C. P., & Owens, F. J. (2010). *Introduction to nanotechnology*. New Delhi: Wiley India.

Ratner, M. A., & Ratner, D. (2008). *Nanotechnology: a gentle introduction to the next big idea*. UpperSaddle River, NJ: Prentice Hall Professional Technical Reference. Timp, G. (1998). *Nanotechnology*. New York: AIP Press.

1,	K2-Understand	05	K4-Analyze	K5-Evaluate	K6-Create		
Course Designed by							
Drof K. Cumunathan/Dr. C. Damalingam Aggistant Drofogan							

Prof. K. Gurunathan/Dr. G. Ramalingam, Assistant Professor

#### **Course Outcome Vs Programme Outcomes**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M(2)	S(3)	S(3)	L(1)	M(2)	M(2)	M(2)	M(2)	M(2)	L(1)
CO2	S(3)	S(3)	S(3)	M(2)	M(2)	L(1)	S(3)	L(1)	S(3)	S(3)
CO3	M(2)	M(2)	S(3)	S(3)	S(3)	L(1)	S(3)	L(1)	M(2)	M(2)
CO4	M(2)	M(2)	L(1)	M(2)	L(1)	M(2)	S(3)	M(2)	M(2)	M(2)
CO5	S(3)	M(2)								
W.AV	2.4	2.6	2.6	2.2	2.2	1.8	2.8	1.8	2.4	1.8

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	M(2)	M(2)	S(3)	M(2)
CO2	M(2)	S(3)	M(2)	S(3)	S(3)
CO3	S(3)	M(2)	M(2)	M(2)	M(2)
CO4	M(2)	M(2)	S(3)	S(3)	M(2)
CO5	S(3)	S(3)	S(3)	S(3)	S(3)
W.AV	2.6	2.4	2.4	2.8	2.4

Course Outcome Vs Programme Specific Outcomes

S-Strong(3), M-Medium(2), L- Low(1)



			Semester - III					
NME	Cours	se code	Nanotechnology and Advan	ced	Т	Credits: 2	Hours:3	
			<b>Drug Delivery System</b>					
Unit I								
Object	ive 1	To pr	ovide an over view on the u	inique ch	arac	cteristic fea	tures of	
		nanom	aterials, its synthesis and chara	cterizatio	n.			
Basic c	oncept	ts of Nai	o-science and technology: Prop	perties and	tech	nological ad	lvantages	
of Nan	omater	ials - Qu	antum wire, Quantum well, Qu	antum dot	s an	d Carbon na	anotubes:	
Synthes	sis – T	Top dov	n and bottom up approaches;	Characte	erizat	tion - Spec	troscopic	
techniq	ues and	d Micros	copic observations.					
Outcor	ne 1	Under	stand the basic concepts	on fa	ıbric	cation of	K1	
		nanom	aterials for biomedical applicat	tion				
			Unit II					
Object	ive 2	To pro	vide insight on various nanoca	rriers for	effe	ctive drug a	and gene	
		deliver	-					
Funda	mental	s and	types of Nanocarriers: Types	s - Viral	nan	ocarriers, F	Polymeric	
nanoca	rrier, l	ipid nar	ocarrier, carbon nanostructures	, dendrim	ers,	silica nano	particles,	
Microb	es and	antibod	y based nanocarriers; Physicoch	nemical pi	oper	ties - Size,	Surface,	
Magnet	tic and	Optical I	Properties	6				
Outcor	ne 2	Gain	a broad understanding on n	anocarrie	rs	and its	K2	
		applica	tions in th <mark>e field of biomedicin</mark>	e				
			Unit III	2				
Object	ive 3	To un	lerstand the principles of drug	g delivery	sys	tems and co	ontrol of	
		varied	<mark>para</mark> meters for effective drug d	lelivery	No.			
Nanote	chnolo	ogy for	Drug Targeting: - Drug tar	geting –	Targ	geted (Micr	oneedles,	
Microp	umps,	microval	ves, Implantable microchips), no	on-targeted	l del	ivery, contro	olleddrug	
release;	Nano	particle	surface modification – bioconju	gation, pe	glya	tion, antibo	dies cell-	
	-	ing, dis	eased tissue destruction using	nanoparti	cles,	drug enca	psulation	
strategi	es.							
Outcor	ne 3		the concept of nanobased dr	ug delive	ry s	ystem for	K3	
		targete	d drug delivery					
			Unit IV					
Object	ive 4	To up	date the advancement of na	nomateri	als	in bioimag	ing and	
		biosen	sors					
		0.	Imaging and Detection: - F	-		-		
	-		alization, Image analysis, Imagi	-	-	• •	-	
-			analytical applications – Biose					
			s for biosensor applications-		of	biosensors.	Use of	
nanopa	rticles f	for MRI,	X Ray, Ultrasonography Drug D	elivery.				
Outcor	ne 4		the knowledge for the develo	-			K4	
		deliver	y systems for the sensing, diagr	nosis and t	ther	apy		

Unit V	
--------	--

Objective 5 To impart knowledge on recent development in nanotechnology in cancer therapy and regenerative medicine

Nanomedicine: - Nanotechnology in Cancer Therapy - Passive and Active Targeting Strategies in Cancer with a Focus on Nanotechnology Applications, Multifunctional Nanoparticles for Cancer Therapy - Neutron Capture Therapy of Cancer, Nanoneurology – Nano cardiology - Nano-Orthopedics - Nano-Ophthalmology.

Outcome 5Critically evaluate the recent trends in nanomedicine and<br/>apply in focused clinical areaK6

- Suggested Readings: -
- Bulte, J. W., & Modo, M. M. (2016). Design and Applications of Nanoparticles in Biomedical Imaging. Spinger. doi:10.1007/978-3-319-42169-8

Kumar, P., & Srivastava, R. (2016). Nanomedicine for Cancer Therapy: From Chemotherapeutic to Hyperthermia-Based Therapy. Springer International Publishing. doi:10.1007/978-3-319-45826-7

Malhotra, B., & Ali, M. A. (2017). Nanomaterials for Biosensors (1st ed.). Elsevier.

Mishra, V., Kesharwani, P., Amin, M., & Iyer, A. (2017). Nanotechnology-Based Approaches for Targeting and Delivery of Drugs and Genes. Academic Press.

Mohapatra, S., Ranjan, S., Dasgupta, N., & Mishra, R. (2019). Nanocarriers for drug delivery, Nanoscience and Nanotechnology in drug delivery. Amsterdam: Elseiver. Nikolelis, D., & Nikoleli, G. (2018). Nanotechnology and Biosensors. Amsterdam:

Elseiver.

Jain, K. K. (2017). *The Handbook of Nanomedicine* (Third ed.). Humana Press.

- Shah, M. M., Imran, M., & Ullah, S. (2017). *Delivery and Diagnosis (1st ed.)*. William Andrew.
- Slevin. (2012). Current Advances in the Medical Application of Nanotechnology (1st ed.).Manchester:Bentham Press. doi:10.2174/97816080513111120101
- Tuan, V. D. (2015). *Nanotechnology in biology and medicine methods, devices and Applications* (Second ed.). San Fransico: CRC press.
- Varghese, T., & Balakrishna, K. (2012). Nanotechnology: An Introduction to Synthesis, Properties and Applications of Nanomaterials. Atlantic & Distributors

### **Online Resource**

http://www.nanomedicinecenter.com

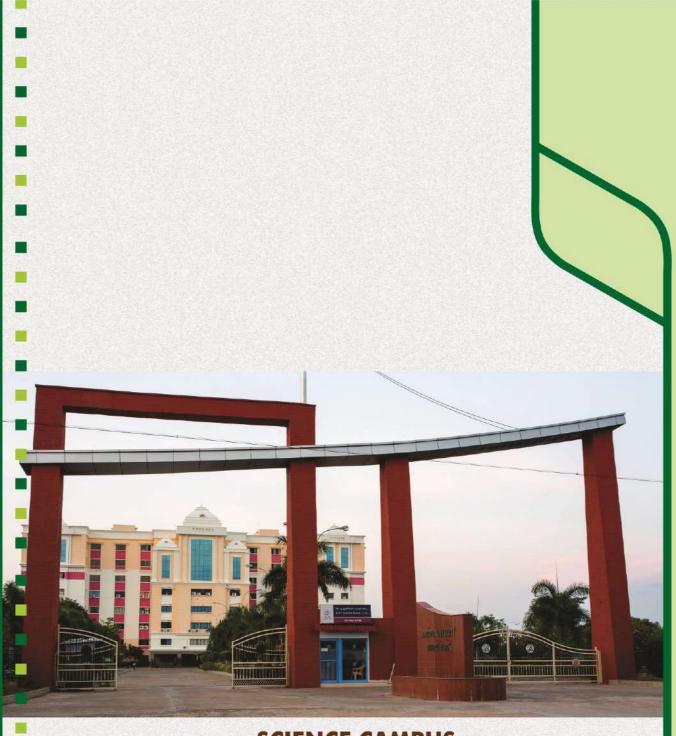
https://nptel.ac.in/courses/118107015/module4/lecture7/lecture7.pdf https://nptel.ac.in/courses/102107058/

https://nptel.ac.in/courses/118106019/Module%209/Lecture%203/Lecture%203. pdf

http://www.imm.org/Reports/rep048.pdf.

K1-Remember	K2-Understand	K3- Apply	K4-Analyze K5-Evaluate		K6-Create				
	Course Designed by								
	Dr. N. Suganthy, Assistant Professor								

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M(2)	S(3)	M(2)	M(2)	M(2)	S(3)	M(2)	M(2)	M(2)	M(2)
CO2	S(3)	S(3)	M(2)	S(3)	M(2)	S(3)	S(3)	M(2)	S(3)	M(2)
CO3	M(2)	S(3)	M(2)	S(3)						
CO4	S(3)	S(3)	M(2)	S(3)	S(3)	S(3)	M(2)	M(2)	S(3)	S(3)
CO5	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)	M(2)	M(2)	S(3)	M(2)
W.AV	2.6	3	2.2	2.6	2.6	3	2.4	2.4	2.8	2.4


Course Outcome Vs Programme Outcome

S-Strong(3), M-Medium(2), L- Low(1)

Course	Outcome	Vs Programme	Specific	Outcomes

A	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	<b>M</b> (2)	S(3)	M(2)	M(2)
CO2	S(3)	S(3)	<b>S</b> (3)	S(3)	M(2)
CO3	S(3)	S(3)	S(3)	S(3)	S(3)
CO4	M(2)	S(3)	S(3)	S(3)	S(3)
CO5	S(3)	S(3)	S(3)	S(3)	S(3)
W.AV	2.8	2.8	3	2.8	2.6

S-Strong(3), M-Medium(2), L- Low(1)



# **SCIENCE CAMPUS**